Skip to the content

Lessons from dynamic cadaver and invasive bone pin studies: do we know how the foot really moves during gait?

Nester, CJ 2009, 'Lessons from dynamic cadaver and invasive bone pin studies: do we know how the foot really moves during gait?' , Journal of Foot and Ankle Research, 2 (1) , p. 18.

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (1361kB) | Preview

    Abstract

    Background: This paper provides a summary of a Keynote lecture delivered at the 2009 Australasian Podiatry Conference. The aim of the paper is to review recent research that has adopted dynamic cadaver and invasive kinematics research approaches to better understand foot and ankle kinematics during gait. It is not intended to systematically cover all literature related to foot and ankle kinematics (such as research using surface mounted markers). Since the paper is based on a keynote presentation its focuses on the authors own experiences and work in the main, drawing on the work of others where appropriate Methods: Two approaches to the problem of accessing and measuring the kinematics of individual anatomical structures in the foot have been taken, (i) static and dynamic cadaver models, and (ii) invasive in-vivo research. Cadaver models offer the advantage that there is complete access to all the tissues of the foot, but the cadaver must be manipulated and loaded in a manner which replicates how the foot would have performed when in-vivo. The key value of invasive in-vivo foot kinematics research is the validity of the description of foot kinematics, but the key difficulty is how generalisable this data is to the wider population. Results: Through these techniques a great deal has been learnt. We better understand the valuable contribution mid and forefoot joints make to foot biomechanics, and how the ankle and subtalar joints can have almost comparable roles. Variation between people in foot kinematics is high and normal. This includes variation in how specific joints move and how combinations of joints move. The foot continues to demonstrate its flexibility in enabling us to get from A to B via a large number of different kinematic solutions. Conclusion: Rather than continue to apply a poorly founded model of foot type whose basis is to make all feet meet criteria for the mechanical 'ideal' or 'normal' foot, we should embrace variation between feet and identify it as an opportunity to develop patient-specific clinical models of foot function.

    Item Type: Article
    Themes: Health and Wellbeing
    Schools: Colleges and Schools > College of Health & Social Care > School of Health Sciences > Centre for Health Sciences Research
    Colleges and Schools > College of Health & Social Care
    Colleges and Schools > College of Health & Social Care > School of Health Sciences
    Journal or Publication Title: Journal of Foot and Ankle Research
    Publisher: Journal of Foot and Ankle Research
    Refereed: Yes
    ISSN: 1757-1146
    Depositing User: RH Shuttleworth
    Date Deposited: 12 May 2011 10:59
    Last Modified: 20 Aug 2013 17:51
    URI: http://usir.salford.ac.uk/id/eprint/15770

    Actions (login required)

    Edit record (repository staff only)

    Downloads per month over past year

    View more statistics