Skip to the content

Combining active learning with inductive logic programming to close the loop in machine learning

Bryant, CH, Muggleton, SH, Page, CD and Sternberg, MJE 1999, 'Combining active learning with inductive logic programming to close the loop in machine learning' , in: Proceedings of AISB'99 Symposium on AI and Scientific Creativity , The Society for the Study of Artificial Intelligence and Simulation of Behaviour (AISB), pp. 59-64.

Full text not available from this repository. (Request a copy)

Abstract

Machine Learning (ML) systems that produce human-comprehensible hypotheses from data are typically open loop, with no direct link between the ML system and the collection of data. This paper describes the alternative, it Closed Loop Machine Learning. This is related to the area of Active Learning in which the ML system actively selects experiments to discriminate between contending hypotheses. In Closed Loop Machine Learning the system not only selects but also carries out the experiments in the learning domain. ASE-Progol, a Closed Loop Machine Learning system, is proposed. ASE-Progol will use the ILP system Progol to form the initial hypothesis set. It will then devise experiments to select between competing hypotheses, direct a robot to perform the experiments, and finally analyse the experimental results. ASE-Progol will then revise its hypotheses and repeat the cycle until a unique hypothesis remains. This will be, to our knowledge, the first attempt to use a robot to carry out experiments selected by Active Learning within a real world application.

Item Type: Book Section
Editors: Colton, S
Additional Information: AISB: (British) Society for the Study of Artificial Intelligence and the Simulation of Behaviour
Uncontrolled Keywords: active learning, machine learning
Themes: Subjects / Themes > Q Science > Q Science (General)
Subjects / Themes > Q Science > QA Mathematics > QA075 Electronic computers. Computer science
Subjects outside of the University Themes
Schools: Colleges and Schools > College of Science & Technology
Colleges and Schools > College of Science & Technology > School of Computing, Science and Engineering
Colleges and Schools > College of Science & Technology > School of Computing, Science and Engineering > Data Mining and Pattern Recognition Research Centre
Publisher: The Society for the Study of Artificial Intelligence and Simulation of Behaviour (AISB)
Refereed: Yes
ISBN: 1902956044
Related URLs:
Depositing User: Dr Chris H. Bryant
Date Deposited: 17 Feb 2009 12:43
Last Modified: 20 Aug 2013 16:56
URI: http://usir.salford.ac.uk/id/eprint/1765

Actions (login required)

Edit record (repository staff only)