Fractal laser sources: new analyses, results and contexts

Christian, JM, McDonald, GS, Heyes, AS and Huang, JG

<table>
<thead>
<tr>
<th>Title</th>
<th>Fractal laser sources: new analyses, results and contexts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Christian, JM, McDonald, GS, Heyes, AS and Huang, JG</td>
</tr>
<tr>
<td>Type</td>
<td>Conference or Workshop Item</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/18269/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2010</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Fractal laser sources: new analyses, results and contexts
J M Christian¹, G S McDonald¹, A S Heyes¹ and J G Huang²
¹ Materials & Physics Research Centre, University of Salford, UK
² School of Engineering and Mathematical Sciences, City University London, UK

A series of significant new extensions concerning fractal light generation are reported. Firstly, we summarise techniques and results from the first full analysis of the linear modes of ‘fractal lasers’ [1] – unstable-cavity geometries with arbitrary Fresnel number \(N_{\text{eq}} \) and arbitrary round-trip magnification \(M \). Secondly, simulations and analyses for new contexts of laser-driven ‘nonlinear fractal generators’ [2] – where analogous nonlinear processes spontaneously generate fractals – are presented. Finally, we outline why such fractal laser sources may play a pivotal role in future Nature-inspired devices and system architectures.

Our discovery of fractal laser modes from unstable-cavity lasers [1] uncovered a general class of linear systems (with repeated magnification) that possess fractal eigenmodes. However, numerical or analytical analyses was limited to modes of either: very limited fractality, laser cavities with \(N_{\text{eq}} \approx \mathcal{O}(1) \); or unlimited fractality, when \(N_{\text{eq}} \gg \mathcal{O}(1) \). General properties of fractal modes from these two extremes are, perhaps unsurprisingly, different. Building on Fresnel diffraction theory developments [3], we report fractal mode characteristics in the important intermediate regime – corresponding to real-world systems with significant and exploitable fractality (see Figure 1).

![Figure 1. Lowest-loss eigenmode patterns for ‘kaleidoscope fractals lasers’ with \(N_{\text{eq}} = 30 \) and \(M = 1.5 \).](image)

We further proposed fractal light generation through entirely-nonlinear mechanisms [2]. The context examined was a single configuration with a particular nonlinearity. Generalisation of this work to new contexts - with profoundly different nonlinearities and experimental configurations, such as ring cavities and cavity-less contexts – will be summarised.

The huge spatial bandwidths associated with fractal sources have potential exploitation within novel technological contexts. We conclude with a brief account of such potential new technologies.

References