Soliton solutions of the nonlinear Helmholtz equation: propagation properties, interface effects and new families of exact solutions
Chamorro-Posada, P, Sanchez-Curto, J, McDonald, GS and Christian, JM

<table>
<thead>
<tr>
<th>Title</th>
<th>Soliton solutions of the nonlinear Helmholtz equation: propagation properties, interface effects and new families of exact solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Chamorro-Posada, P, Sanchez-Curto, J, McDonald, GS and Christian, JM</td>
</tr>
<tr>
<td>Type</td>
<td>Conference or Workshop Item</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/18321/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2008</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Soliton solutions of the nonlinear Helmholtz equation: propagation properties, interface effects and new families of exact solutions

Pedro Chamorro-Posada and Julio Sánchez-Curto

Departamento de Teoría de la Señal y Comunicaciones e I. T., Universidad de Valladolid, ETSIT, Campus Miguel Delibes s/n, 47011 Valladolid, Spain.

Graham S. McDonald and James M. Christian

Joule Physics Lab., School of Computing, Science and Engineering, University of Salford, Salford M5 4WT, UK.

The properties of spatial optical solitons are most often studied using nonlinear Schrödinger (NLS) equations. These model the slow modulation of its envelope a linear wave solution experiences when propagation takes place in a weakly nonlinear medium. This slow variation must fall within the range of validity of the paraxial approximation which permits to derive an NLS equation from a more general nonlinear Helmholtz (NLH) equation [1, 2, 3]. Therefore, the analyses based on NLS equations are limited to beams propagating along a definite axis, or infinitesimally close to it, and which are broad when compared to the wavelength, thus, preserving the weakly nonlinear nature of the propagating disturbance.

The restrictions on the propagation angle can be released using the corresponding NLH equation which restores the spatial symmetry required when angular considerations are fundamental. This is the case when spatial solitons collide [1] or when they impinge on a nonlinear interface [2]. In recent works [3], new families of exact Helmholtz soliton solutions have also been obtained and the properties of the novel solutions have been analysed both numerically and analytically. The studies cover the types of nonlinearities which can be found in most materials with a practical interest. A detailed account of the recent progress in the field will be presented.

References