Skip to the content

Identification of disease-causing genes using microarray data mining and gene ontology

Mohammadi, A, Saraee, M and Salehi, M 2011, 'Identification of disease-causing genes using microarray data mining and gene ontology' , BMC Medical Genomics, 4 (12) , pp. 1-9.

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (282kB) | Preview

    Abstract

    Background: One of the best and most accurate methods for identifying disease-causing genes is monitoring gene expression values in different samples using microarray technology. One of the shortcomings of microarray data is that they provide a small quantity of samples with respect to the number of genes. This problem reduces the classification accuracy of the methods, so gene selection is essential to improve the predictive accuracy and to identify potential marker genes for a disease. Among numerous existing methods for gene selection, support vector machine-based recursive feature elimination (SVMRFE) has become one of the leading methods, but its performance can be reduced because of the small sample size, noisy data and the fact that the method does not remove redundant genes. Methods: We propose a novel framework for gene selection which uses the advantageous features of conventional methods and addresses their weaknesses. In fact, we have combined the Fisher method and SVMRFE to utilize the advantages of a filtering method as well as an embedded method. Furthermore, we have added a redundancy reduction stage to address the weakness of the Fisher method and SVMRFE. In addition to gene expression values, the proposed method uses Gene Ontology which is a reliable source of information on genes. The use of Gene Ontology can compensate, in part, for the limitations of microarrays, such as having a small number of samples and erroneous measurement results. Results: The proposed method has been applied to colon, Diffuse Large B-Cell Lymphoma (DLBCL) and prostate cancer datasets. The empirical results show that our method has improved classification performance in terms of accuracy, sensitivity and specificity. In addition, the study of the molecular function of selected genes strengthened the hypothesis that these genes are involved in the process of cancer growth. Conclusions: The proposed method addresses the weakness of conventional methods by adding a redundancy reduction stage and utilizing Gene Ontology information. It predicts marker genes for colon, DLBCL and prostate cancer with a high accuracy. The predictions made in this study can serve as a list of candidates for subsequent wet-lab verification and might help in the search for a cure for cancers.

    Item Type: Article
    Themes: Health and Wellbeing
    Schools: Colleges and Schools > College of Science & Technology > School of Computing, Science and Engineering > Data Mining and Pattern Recognition Research Centre
    Journal or Publication Title: BMC Medical Genomics
    Publisher: BioMed Central
    Refereed: Yes
    ISSN: 1755-8794
    Related URLs:
    Depositing User: Dr Mo Saraee
    Date Deposited: 19 Oct 2011 11:21
    Last Modified: 20 Sep 2013 16:17
    URI: http://usir.salford.ac.uk/id/eprint/18500

    Document Downloads

    More statistics for this item...

    Actions (login required)

    Edit record (repository staff only)