Skip to the content

Di-hydrogen in cation-substituted zeolite-X - an inelastic neutron scattering study

Ramirez -Cuesta , AJ, Mitchell, PCH, Ross, DK, Georgiev, PA, Anderson, PA, Langmi, HW and Book, D 2007, 'Di-hydrogen in cation-substituted zeolite-X - an inelastic neutron scattering study' , Journal of Materials Chemistry, 17 , pp. 2533-2539.

Full text not available from this repository. (Request a copy)

Abstract

An inelastic neutron scattering (INS) study of the rotational–vibrational spectrum of dihydrogen sorbed by zeolite X having substituted sodium, calcium and zinc cations is reported. The rotational–vibrational spectrum of H2 was observed at low energy transfer (below ca. 25 meV, 202 cm21); the vibration was that of the H2 molecule against the binding site (H2–X, not H–H). The vibration frequency was proportional to the polarising power of the cation (Na+ , Ca2+ , Zn2+). Polarisation of the H2 molecule dominated the interaction of H2 with this binding site. The total scattering intensity was proportional to the dihydrogen dose. However the vibrational intensities became constant at ca. 0.3 wt% showing that the H2 binding sites had saturated. Additional dihydrogen appeared as unbound or weakly bound dihydrogen exhibiting recoil.

Item Type: Article
Themes: Energy
Schools: Colleges and Schools > College of Science & Technology > School of Computing, Science and Engineering > Materials & Physics Research Centre
Journal or Publication Title: Journal of Materials Chemistry
Publisher: Royal Society of Chemistry
Refereed: Yes
ISSN: 0959-9428
Depositing User: Prof D. Keith Ross
Date Deposited: 23 Apr 2012 12:00
Last Modified: 20 Aug 2013 18:27
References: 1 A. Zu¨ ttel, Naturwissenschaften, 2004, 91, 157. 2 X. Z. Y. P. Zhang, W. Y. Sun and L. Zhou, J. Phys. Chem. B, 2006, 110, 22596. 3 G. T. Palomino, M. R. L. Carayol and C. O. Area´n, J. Mater. Chem., 2006, 16, 2884. 4 H. W. Langmi, D. Book, A. Walton, S. R. Johnson, M. M. Al-Mamouri, J. D. Speight, P. P. Edwards, I. R. Harris and P. A. Anderson, J. Alloys Compd., 2005, 404–406, 637. 5 L. Regli, A. Zecchina, J. G. Vitillo, D. Cocina, G. Spoto, C. Lamberti, K. P. Lillerud, U. Olsbye and S. Bordiga, Phys. Chem. Chem. Phys., 2005, 7, 3197. 6 H. W. Langmi, A. Walton, M. M. Al-Mamouri, S. R. Johnson, D. Book, J. D. Speight, P. P. Edwards, I. Gameson, P. A. Anderson and I. R. Harris, J. Alloys Compd., 2003, 356, 710. 7 S. B. Kayiran and F. L. Darkrim, Surf. Interface Anal., 2002, 34, 100. 8 MH2006 International Symposium on Metal–Hydrogen Systems— Fundamentals and Applications, Hawaii, October 2006. A. J. Ramirez-Cuesta, P. C. H. Mitchell, D. K. Ross, P. A. Georgiev, P. A. Anderson, H. W. Langmi and D. Book, J. Alloys Compd., 2007, DOI: 10.1016/j.jallcom.2006.12.030. See also A. J. Ramirez- Cuesta and P. C. H. Mitchell, Catal. Today, 2007, 120, 368. 9 P. C. H. Mitchell, S. F. Parker, A. J. Ramirez-Cuesta and J. Tomkinson, Vibrational Spectroscopy with Neutrons with Applications in Chemistry, Biology, Materials Science and Catalysis. Series on Neutron Techniques and Applications—Vol. 3, ed. J. L. Finney and D. L. Worcester, World Scientific, London, 2005. 10 J. A. Young and J. U. Koppel, Phys. Rev., 1964, 135, A603. 11 A. J. Ramirez-Cuesta, P. C. H. Mitchell and S. F. Parker, J. Mol. Catal. A: Chem., 2001, 167, 217. 12 A. J. Ramirez-Cuesta, P. C. H. Mitchell, S. F. Parker and P. A. Barrett, Chem. Commun., 2000, 1257. 13 P. A. Georgiev, D. K. Ross, A. De Monte, U. Montaretto- Marullo, R. A. H. Edwards, A. J. Ramirez-Cuesta and D. Colognesi, J. Phys.: Condens. Matter, 2004, 16, L73. 14 P. A. Georgiev, D. K. Ross, A. De Monte, U. Montaretto- Marullo, R. A. H. Edwards, A. J. Ramirez-Cuesta, M. A. Adams and D. Colognesi, Carbon, 2005, 43, 895. 15 C. R. Anderson, D. F. Coker, J. Eckert and A. L. R. Bug, J. Chem. Phys., 1999, 111, 7599. 16 A. L. R. Bug and G. J. Martyna, Chem. Phys., 2000, 261, 89. 17 J. Eckert, J. M. Nicol, J. Howard and F. R. Trouw, J. Phys. Chem., 1996, 100, 10646. 18 J. Eckert and G. J. Kubas, J. Phys. Chem., 1993, 97, 2378. 19 J. A. Mackinnon, J. Eckert, D. F. Coker and A. L. R. Bug, J. Chem. Phys., 2001, 114, 10137. 20 B. L. Mojet, J. Eckert, R. A. van Santen, A. Albinati and R. E. Lechner, J. Am. Chem. Soc., 2001, 123, 8147. 21 J. M. Nicol, J. Eckert and J. Howard, J. Phys. Chem., 1988, 92, 7117. 22 I. F. Silvera, Rev. Mod. Phys., 1980, 52, 393. 23 V. B. Kazansky, V. Y. Borovkov and H. G. Karge, J. Chem. Soc., Faraday Trans., 1997, 93, 1843. 24 C. A. Coulson, Electricity, Oliver and Boyd, Edinburgh, 3rd edn, 1953. 25 J. W. Ward, Trans. Faraday Soc., 1971, 67, 1489. 26 N. T. Tam, P. Tsai and R. P. Cooney, Aust. J. Chem., 1978, 31, 255. 27 L. Jankovic and P. Komadel, J. Catal., 2003, 218, 227. 28 A. Yu. Khodakov, S. L. M. Kustov, V. B. Kazansky and C. Williams, J. Chem. Soc., Faraday Trans., 1993, 89, 1393 (The authors plot the frequency shift of adsorbed methane vs. 1/r2 for Mg2+, Ca2+, Sr2+,Ba2+. However, when we include Na+ and plot vs. z/r we obtain a much better linear correlation, R2 0.96 as opposed to R2 0.78 for a plot vs. z/r2). 29 E. Garrone, B. Bonelli, C. Lamberti, B. Civalleri, M. Rocchia, P. Roy and C. O. Arean, J. Chem. Phys., 2002, 117, 10274. 30 C. O. Arean, G. T. Palomino, A. Zecchina, G. Spoto, S. Bordiga and P. Roy, Phys. Chem. Chem. Phys., 1999, 1, 4139. 31 F. J. Torres, B. Civalleri, C. Pisani and P. Ugliengo, J. Phys. Chem. B, 2006, 110, 10467. 32 J. G. Vitillo, A. Damin, A. Zecchina and G. Ricchiardi, J. Chem. Phys., 2005, 122, 114311. 33 C. O. Arean, G. T. Palomino, E. Garrone, D. Nachtigallova and P. Nachtigall, J. Phys. Chem. B, 2006, 110, 395. 34 F. M. Mulder, T. J. Dingemans, H. G. Schimmel, A. J. Ramirez- Cuesta and G. J. Kearley, Hydrogen adsorption strength and sites in the metal organic framework MOFs, submitted. 35 F. M. Mulder, T. J. Dingemans, M. Wagemaker and G. J. Kearley, Chem. Phys., 2005, 317, 113. This
URI: http://usir.salford.ac.uk/id/eprint/22467

Actions (login required)

Edit record (repository staff only)