Skip to the content

Propagation properties of Helmholtz power-law nonlinear surface waves

McCoy, EA, Christian, JM and McDonald, GS 2012, Propagation properties of Helmholtz power-law nonlinear surface waves , in: Second Annual Student Conference on Complexity Science (SCCS 2012), 9th – 12th August 2012, University Gloucestershire, UK.

[img]
Preview
PDF (Abstract) - Accepted Version
Download (8kB) | Preview

    Abstract

    Optical surface waves are a fundamental class of excitation in inhomogeneous nonlinear photonic systems. This type of laser light satisfies a Helmholtz-type governing equation, and is subject to certain boundary conditions. It also has an asymmetric cross-sectional shape due to abrupt changes in material properties that define the (e.g., planar) interface. The stability properties of surface-wave solution branches are notoriously difficult to predict. On the one hand, classic criteria (e.g., Vakhitov-Kolokolov) often fail; on the other hand, numerical computations have, historically, been performed only with approximated governing equations (e.g., of the Schrödinger type). In recent research endeavours [J. M. Christian et al., J. At. Mol. Opt. Phys., in press], we have derived the surface waves for a Helmholtz-type interface model with refractive-index profile that depend on the local light amplitude to an arbitrary power 0 < q < 4. This generic optical nonlinearity describes classes of semiconductors, doped filter glasses, and liquid crystals. Here, we will present the first full investigation of Helmholtz nonlinear surface waves. Exact analytical solutions will be reported, and their properties explored. Extensive simulations with the full (i.e., un-approximated) governing equation have addressed some key issues surrounding the robustness of surface-wave solutions against spontaneous instabilities. New qualitative phenomena have also been predicted when considering interactions between surface waves and (obliquely-incident) spatial solitons (that is, self-collimated laser beams). The interaction angle between the surface-wave and incoming soliton is found to play a pivotal role in determining post-collision behaviour in the system, as is the nonlinearity exponent q.

    Item Type: Conference or Workshop Item (Paper)
    Themes: Media, Digital Technology and the Creative Economy
    Subjects outside of the University Themes
    Schools: Colleges and Schools > College of Science & Technology > School of Computing, Science and Engineering > Materials & Physics Research Centre
    Publisher: Bristol Centre for Complexity Sciences
    Refereed: Yes
    Depositing User: JM Christian
    Date Deposited: 17 Jul 2012 10:08
    Last Modified: 20 Aug 2013 18:29
    URI: http://usir.salford.ac.uk/id/eprint/23001

    Actions (login required)

    Edit record (repository staff only)

    Downloads per month over past year

    View more statistics