Vector spatial solitons: off-axis nonparaxiality in coupled Helmholtz equations
Bostock, C, Christian, JM and McDonald, GS

<table>
<thead>
<tr>
<th>Title</th>
<th>Vector spatial solitons: off-axis nonparaxiality in coupled Helmholtz equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Bostock, C, Christian, JM and McDonald, GS</td>
</tr>
<tr>
<td>Type</td>
<td>Conference or Workshop Item</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/23013/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2012</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Vector spatial solitons: off-axis nonparaxiality in coupled Helmholtz equations

C. Bostock, J. M. Christian, and G. S. McDonald

Materials & Physics Research Centre, University of Salford, U.K.

Email: c.bostock1@edu.salford.ac.uk

Keywords: spatial solitons, Helmholtz equations, modulational instability

Vector spatial solitons are complex optical beams with several distinct components. These components (which may be bright-like and/or dark-like) are localized in space and tend to overlap strongly in the propagation plane, thereby allowing the interplay between diffraction and nonlinear effects (e.g., self- and mutual-focusing) to result in stationary light structures. Our group has proposed a more complete and realistic model for describing two-colour vector phenomena, where each electric-field component is at a distinct optical frequency (e.g., ω_1 and ω_2). A key feature of our approach is that one may access multi-colour geometries involving beam propagation at arbitrary angles and orientations with respect to the reference direction in the laboratory frame – such considerations are central to technological device architectures involving multiplexing and interface geometries, but lie far outside the reach of conventional theory [1,2]. We have recently solved the modulational instability problem (which is 4x4 in nature) exactly [3], and extensive computations have confirmed theoretical predictions (e.g., the instability of bright-dark solitons in a focusing Kerr medium). New families of exact analytical two-colour solitons have also been derived (see figure 1), each of which has co-propagation and counter-propagation classes that are related by geometrical transformation.

![Electric field envelope at frequency ω_1](image1.png)

![Electric field envelope at frequency ω_2](image2.png)

Figure 1. Intensity profiles for bright-bright two-colour Helmholtz spatial solitons travelling off-axis at angle θ.

References