Spatial solitons at interfaces: nonparaxial refraction & giant Goos-Hänchen shifts

McCoy, EA, Christian, JM and McDonald, GS

<table>
<thead>
<tr>
<th>Title</th>
<th>Spatial solitons at interfaces: nonparaxial refraction & giant Goos-Hänchen shifts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>McCoy, EA, Christian, JM and McDonald, GS</td>
</tr>
<tr>
<td>Type</td>
<td>Conference or Workshop Item</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/23016/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2012</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Spatial solitons at interfaces:
nonparaxial refraction & giant Goos-Hänchen shifts

E. A. McCoy, J. M. Christian, and G. S. McDonald

Materials & Physics Research Centre, University of Salford, U.K.

Email: e.mccoy1@edu.salford.ac.uk

Keywords: Helmholtz solitons, optical refraction, Goos-Hänchen shift

The behaviour of light at interfaces underpins, in an essential way, the entire field of optics: almost all technological device designs and architectures rely on the interplay between material mismatches (that define the interface) and the 'degree of obliqueness' of the incident, reflected, and refracted waves. The seminal works on nonlinear beam refraction [1] considered scalar bright spatial solitons impinging on the interface between two Kerr-type media with different dielectric parameters, but where all angles (relative to the interface) were constrained to be near-negligibly small. Our Group has been developing new mathematical and computational tools to describe arbitrary-angle refraction of similar beams [2]. The most recent research has been considering more general material aspects (e.g., from non-Kerr nonlinearities) and also giant Goos-Hänchen (GH) shifts [2,3]. Close to a critical point (which depends upon a complicated interplay between finite-beam characteristics and material mismatches), the GH shift shows a remarkable sensitivity to incidence angle, and also to medium nonlinearity (see figure 1). Indeed, we believe we have uncovered GH shifts that are unprecedented in magnitude, perhaps the largest ever predicted. A universal Snell’s law describing beam refraction has also been tested directly against full numerical calculations.

Figure 1. A selection of computer simulations illustrating the Goos-Hänchen shift (denoted by ζ_0) in various power-law optical materials where the nonlinearity exponent q is varied but the incidence angle remains fixed.

References