A comparative analysis of procurement methods used on competitively tendered office projects in the UK

Muriro, A and Wood, GD

<table>
<thead>
<tr>
<th>Title</th>
<th>A comparative analysis of procurement methods used on competitively tendered office projects in the UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Muriro, A and Wood, GD</td>
</tr>
<tr>
<td>Type</td>
<td>Conference or Workshop Item</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/23055/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2010</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
The RICS COBRA Conference is held annually. The aim of COBRA is to provide a platform for the dissemination of original research and new developments within the specific disciplines, sub-disciplines or field of study of:

Management of the construction process

- Cost and value management
- Building technology
- Legal aspects of construction and procurement
- Public private partnerships
- Health and safety
- Procurement
- Risk management
- Project management

The built asset

- Property investment theory and practice
- Indirect property investment
- Property market forecasting
- Property pricing and appraisal
- Law of property, housing and land use planning
- Urban development
- Planning and property markets
- Financial analysis of the property market and property assets
- The dynamics of residential property markets
- Global comparative analysis of property markets
- Building occupation
- Sustainability and real estate
- Sustainability and environmental law
- Building performance
The property industry

- Information technology
- Innovation in education and training
- Human and organisational aspects of the industry
- Alternative dispute resolution and conflict management
- Professional education and training

Peer review process

All papers submitted to COBRA were subjected to a double-blind (peer review) refereeing process. Referees were drawn from an expert panel, representing respected academics from the construction and building research community. The conference organisers wish to extend their appreciation to the following members of the panel for their work, which is invaluable to the success of COBRA.

Rifat Akbiyikli Sakarya University, Turkey
Rafid Al Khaddar Liverpool John Moores University, UK
Ahmed Al Shamma’a Liverpool John Moores University, UK
Tony Auchterlounie University of Bolton, UK
Kwasi Gyau Baffour Awuah University of Wolverhampton, UK

Kabir Bala Ahmadu Bello University, Nigeria
Juerg Bernet Danube University Krems, Austria
John Boon UNITEC, New Zealand
Douw Boshoff University of Pretoria, South Africa
Richard Burt Auburn University, USA

Judith Callanan RMIT University, Australia
Kate Carter Heriot-Watt University, UK
Keith Cattell University of Cape Town, South Africa
Antoinette Charles Glasgow Caledonian University, UK
Fiona Cheung Queensland University of Technology, Australia
Sai On Cheung City University of Hong Kong
Samuel Chikafalimani University of Pretoria, South Africa
Ifte Choudhury Texas A and M University, USA
Chris Cloete University of Pretoria, South Africa
Alan Coday Anglia Ruskin University, UK
Michael Coffey Anglia Ruskin University, UK
Nigel Craig Glasgow Caledonian University, UK

Ayirebi Dansoh KNUST, Ghana
Peter Davis Curtin University, Australia
Peter Defoe Calford Seaden, UK
Grace Ding University of Technology Sydney, Australia
Hemanta Doloi University of Melbourne, Australia
John Dye TPS Consult, UK

Peter Edwards RMIT, Australia
Charles Egbu University of Salford, UK

Ola Fagbenle Covenant University, Nigeria
Ben Farrow Auburn University, USA
Peter Fenn University of Manchester, UK
Peter Fewings University of the West of England, UK
Peter Fisher University of Northumbria, UK
Chris Fortune University of Salford, UK
Valerie Francis University of Melbourne, Australia
Rod Gameson University of Wolverhampton, UK
Abdulkadir Ganah University of Central Lancashire, UK

Seung Hon Han Yonsei University, South Korea
Anthony Hatfield University of Wolverhampton, UK
Theo Haupt Cape Peninsula University of Technology, South Africa
Dries Hauptfleisch University of the Free State, South Africa
Paul Holley Auburn University, USA
Danie Hoffman University of Pretoria, South Africa
Keith Hogg University of Northumbria, UK
Alan Hore Construction IT Alliance, Ireland
Bon-Gang Hwang National University of Singapore

Joseph Igwe University of Lagos, Nigeria
Adi Irfan Universiti Kebangsaan Malaysia, Malaysia
Javier Irizarry Georgia Institute of Technology, USA
Usman Isah University of Manchester, UK

David Jenkins University of Glamorgan, UK
Godfaurd John University of Central Lancashire, UK
Keith Jones University of Greenwich, UK

Dean Kashiwagi Arizona State University, USA
Nthatisi Khatleli University of Cape Town, South Africa
Mohammed Kishk Robert Gordon’s University, UK
Andrew Knight Nottingham Trent University, UK
Scott Kramer Auburn University, USA
Esra Kurul Oxford Brookes University, UK

Richard Laing Robert Gordon’s University, UK
Terence Lam Anglia Ruskin University, UK
Veerasak Likhitruangsilp Chulalongkorn University, Thailand
John Littlewood University of Wales Institute, Cardiff, UK
Junshan Liu Auburn University, USA
Champika Liyanage University of Central Lancashire, UK
Greg Lloyd University of Ulster, UK
S M Lo City University of Hong Kong
Mok Ken Loong Yonsei University, South Korea
Martin Loosemore University of New South Wales, Australia

David Manase Glasgow Caledonian University, UK
Donny Mangitung Universitas Tadulako, Malaysia
Patrick Manu University of Wolverhampton, UK
Tinus Maritz University of Pretoria, South Africa
Hendrik Marx University of the Free State. South Africa
Ludwig Martin Cape Peninsula University of Technology, South Africa
Wilfred Matipa Liverpool John Moores University, UK
Steven McCabe Birmingham City University, UK
Annie McCartney University of Glamorgan, UK
Andrew McCoy Virginia Tech, USA
Enda McKenna Queen’s University Belfast, UK
Kathy Michell University of Cape Town, South Africa
Roy Morledge Nottingham Trent University, UK
Michael Murray University of Strathclyde, UK
Saka Najimu Glasgow Caledonian University, UK
Stanley Njuangang University of Central Lancashire, UK
Henry Odeyinka University of Ulster, UK
Ayodejo Ojo Ministry of National Development, Seychelles
Michael Oladokun University of Uyo, Nigeria
Alfred Olatanji Newcastle University, Australia
Austin Otegbulu
Beliz Ozorhon Bogazici University, Turkey
Obinna Ozumba University of the Witwatersrand, South Africa

Robert Pearl University of KwaZulu, Natal, South Africa
Sriniath Perera Northumbria University, UK
Joanna Poon Nottingham Trent University, UK
Keith Potts University of Wolverhampton, UK
Elena de la Poza Plaza Universidad Politécnica de Valencia, Spain
Matthijs Prins Delft University of Technology, The Netherlands
Hendrik Prinsloo University of Pretoria, South Africa

Richard Reed Deakin University, Australia
Zhaomin Ren University of Glamorgan, UK
Herbert Robinson London South Bank University, UK
Kathryn Robson RMIT, Australia
Simon Robson University of Northumbria, UK
David Root University of Cape Town, South Africa
Kathy Roper Georgia Institute of Technology, USA
Steve Rowlinson University of Hong Kong, Hong Kong
Paul Royston Nottingham Trent University, UK
Paul Ryall University of Glamorgan, UK

Amrit Sagoo Coventry University, UK
Alfredo Serpell Pontificia Universidad Católica de Chile, Chile
Winston Shakantu Nelson Mandela Metropolitan University, South Africa
Yvonne Simpson University of Greenwich, UK
John Smallwood Nelson Mandela Metropolitan University, South Africa
Heather Smeaton-Webb MUJV Ltd. UK
Bruce Smith Auburn University, USA
Melanie Smith Leeds Metropolitan University, UK
Hedley Smyth University College London, UK
John Spillane Queen’s University Belfast, UK
Suresh Subashini University of Wolverhampton, UK
Kenneth Sullivan Arizona State University, USA

Joe Tah Oxford Brookes University, UK
Derek Thomson Heriot-Watt University, UK
Matthew Tucker Liverpool John Moores University, UK
Chika Udeaja Northumbria University, UK
Basie Verster University of the Free State, South Africa
François Viruly University of the Witwatersrand, South Africa
John Wall Waterford Institute of Technology, Ireland
Sara Wilkinson Deakin University, Australia
Trefor Williams University of Glamorgan, UK
In addition to this, the following specialist panel of peer-review experts assessed papers for the COBRA session arranged by CIB W113

John Adriaanse London South Bank University, UK
Julie Adshead University of Salford, UK
Alison Ahearn Imperial College London, UK
Rachelle Alterman Technion, Israel
Deniz Artan Ilter Istanbul Technical University, Turkey

Jane Ball University of Sheffield, UK
Luke Bennett Sheffield Hallam University, UK
Michael Brand University of New South Wales, Australia
Penny Brooker University of Wolverhampton, UK

Alice Christudason National University of Singapore
Paul Chynoweth University of Salford, UK
Sai On Cheung City University of Hong Kong
Julie Cross University of Salford, UK

Melissa Daigneault Texas A&M University, USA
Steve Donohoe University of Plymouth, UK

Ari Ekroos University of Helsinki, Finland
Tilak Ginige Bournemouth University, UK
Martin Green Leeds Metropolitan University, UK
David Greenwood Northumbria University, UK
Asanga Gunawansa National University of Singapore

Jan-Bertram Hillig University of Reading, UK
Rob Home Anglia Ruskin University, UK

Peter Kennedy Glasgow Caledonian University, UK
Anthony Lavers Keating Chambers, UK
Wayne Lord Loughborough University, UK
Sarah Lupton Cardiff University

Tim McLernon University of Ulster, UK
Frits Meijer TU Delft, The Netherlands
Jim Mason University of the West of England, UK
Brodie McAdam University of Salford, UK
Tinus Maritz University of Pretoria, South Africa
Francis Moor University of Salford, UK
Issaka Ndekugri University of Wolverhampton, UK
John Pointing Kingston University, UK
Razani Abdul Rahim Universiti Technologi, Malaysia
Linda Thomas-Mobley Georgia Tech, USA
Paul Tracey University of Salford, UK
Yvonne Scannell Trinity College Dublin, Ireland
Cathy Sherry University of New South Wales, Australia
Julian Sidoli del Ceno Birmingham City University, UK
Keren Tweeddale London South Bank University, UK
Henk Visscher TU Delft, The Netherlands
Peter Ward University of Newcastle, Australia
Abstract

The proliferation of procurement methods used for construction projects has inevitably resulted in comparisons being made between the performances associated with each of them. The challenge for researchers in this field has been largely to do with how to compare procurement systems on a like-for-like basis.

In addition the focus of previous studies has tended to be mainly on the critical success factors as assessed at the post-contract stage with less consideration of the effective benchmarking or measurement of success used in assessing the differences between systems and projects. Because of the limitations in previous studies it is perhaps not surprising that, to-date, there seems to be no general consensus on the optimum procurement method to be adopted for similar construction projects.

With this in mind this paper compares empirical information related to the successful tender for procurement methods used in competitive tendering of office projects in the United Kingdom (UK). It uses numeric/quantitative indicators such as construction costs, construction speed, construction time and intensity of construction. Several research techniques were used to achieve this goal. The research data was obtained from the BCIS database. The tender analysis data gathered was grouped in frequency distribution tables to facilitate rigorous examination, checking, interpretation and statistical significance testing. Based on this synthesis the paper provides empirical evidence that design and build (D&B) tendered office projects performed better in terms
of construction costs, unit costs, construction speed and intensity of construction. This is despite the fact that projects tendered under D&B method were more complex, of greater value and larger than those tendered using traditional methods.

Keywords: Procurement methods, success factors, benchmarking, numeric/quantitative indicators.

1. **Introduction**

The selection of the most appropriate procurement method is critical for both the client and other project participants as it is an important factor that contributes to the overall client’s satisfaction and project success. This selection will be dependent upon a number of factors such as cost, time and quality which are widely considered as being the most fundamental criteria for clients seeking to achieve their end product ‘at the highest quality, at the lowest cost and in the shortest time’ (Hackett et al. 2007). The existence of a wide variety of procurement methods available to project developers on the market today has led to several comparisons being made on how the different procurement methods have performed at the end of the construction phase.

However, there is little evidence from literature reviewed of such comparisons being undertaken at tender stage. In addition previous comparisons tended to focus at comparing procurement methods at a single point in time and no regard was made to analyse differences and similarities over a period of time in order to get a greater understanding of trends in the observed data. Since many variables affect project performance during the execution phase the objective of this paper is to critically analyse construction time, construction speed, unit cost of construction and intensity of construction for new build office projects tendered using different procurement methods in the UK based on secondary quantitative data gathered by the Building Cost Information Service (BCIS).

Since project costs would naturally vary from place to place and the effects of inflation would mean that projects tendered some time ago would have different cost profiles to those that have been tendered more recently, the tenders used in this paper were rebased to a tender price index of 212 (2nd Quarter 2010) and further adjusted to a common location index of 122 representing the Greater London geographical area. Indexing was necessary in order to compare projects tendered in different locations during different years.
2. Research methodology and process

The main goal of the research is to quantitatively analyse and compare the performance of procurement methods used in the tendering of office projects in the UK over the last six years. Several research techniques were followed to achieve this goal. The review of related literature helped to define and differentiate between the most commonly employed procurement methods adopted in the UK over the last decade.

Research data was obtained from the BCIS tender analyses data base. The data gathered was then grouped in frequency distribution tables to facilitate rigorous and effective interpretation, analysis, checking and statistical significance testing. As part of the analysis, univariate comparisons of procurement methods used were also undertaken.

2.1 Literature Review

Review of the literature indicates a plethora of research endeavours undertaken over the years aimed at trying to understand the benefits of project delivery systems/procurement methods that have been used in the last few decades. Both qualitative and quantitative research have been undertaken; Oberlender and Zeitoun (1993) quantitatively studied early warning signs of project cost and schedule growth, Pocock (1996) developed a method for measuring the impact of project integration on the performance of public sector projects, Bennett et al (1996) compared the cost, schedule and quality performance of design and build projects and design/bid/build projects recently built in the UK and Walker (1997) analysed construction time performance by looking at traditional versus non-traditional procurement methods.

What is common to previous research reviewed in this study is the importance given to time–
cost relationships in the delivery of construction projects. There is a general recognition that
construction time is a corner stone measure of project success. Recent literature reviewed also
reflects a wide variety of approaches in dealing with the factors affecting construction
durations for different types of projects.

There seems to be a general acceptance of the theory that due to the integration of design and
construction time and cost savings are more likely to be achieved in design and build than in
traditional procurement method. These theories have been used to develop hypotheses of this
study.

Obvious gaps in previous research are the fact that pre-contract time – cost relationships
utilising tender data seems to have been largely overlooked. While post contract studies
undertaken at the end of construction projects are important in undertaking post mortem
studies, pre-contract studies are key to an in-depth understanding of project performance
attributes associated with procurement methods before the production process. In addition the
focus of previous studies has tended to be mainly on critical project success factors post-
contract with less consideration of the effective benchmarking or comparative analysis at
tender stage in assessing the differences between systems and projects.

Because of the limitations in previous studies it is perhaps not surprising that to date
there seems to be no general consensus on the optimum procurement methods to be
adopted for similar construction projects.

With this in mind this paper empirically compares procurement methods used in
tendering of office projects over a relatively long period of time in the United Kingdom
(UK) using numeric/quantitative indicators such as construction costs, construction
speed, construction time and intensity of construction. This is in line with the view that
performance measurement should be an ongoing exercise involving regular collecting
and reporting of information about efficiency and effectiveness of construction projects.
3.0 Data collection, main findings and interpretation

Tender data on new build office projects was obtained from the BCIS website. Since project costs would naturally vary from place to place and the effects of inflation would mean that projects tendered some time ago would have different cost profiles to those that have been tendered more recently the researcher rebased the tenders to a tender price index of 212 (2nd Quarter 2010) and further adjusted the tenders to a common location index of 122 representing the Greater London geographical area.

Out of 82 projects office projects downloaded from the BCIS website 33 were discounted from the analysis as they were either refurbishment/fit out/conversion/refurbishment type projects or lacked sufficient quantitative data that was required for the research. From the remaining 49 projects 35 were tendered using the D&B procurement method and 14 were tendered using the traditional method.

Contractor selection methods used was varied across the projects reviewed but selected competition was the most common method used (49% of the projects analysed) followed by open competition (37%), Negotiation (12%) and Two stage tender (2%) as represented in Figure 1 below.

Figure 1: Contractor Selection methods
The specification for most of the projects reviewed is an average of three storey, reinforced concrete strip and pad foundation, steel frame, face brick/block walls and aluminium cladding.

The high percentage in competitive selection methods used in appointing contractors is in line with perceptions noted in the review of related literature in which clients are viewed as seeking to have their end products at the lowest price. Competition, whether selected or open, is perceived to generate this aspiration.

What is surprising from the research findings is that a larger proportion of D&B contractors were selected using open competition while a larger proportion of traditional contractors were selected using selected competition. It would appear from the literature reviewed that one of the reasons why the D&B delivery method has evolved over the years is an aspiration by clients to tap into the contractor’s expertise in not only interpreting the employer’s requirements but producing a design fit for that purpose. This being the case one would have expected clients to be selective on which contractor to choose for this key task.

Central tendency and variability characteristics of the research data was computed using univariate analysis. Univariate analysis was undertaken for construction costs, construction durations, construction speeds, unit costs, intensity of construction and gross floor areas of all projects under review and the results, classified by procurement method, is shown in Table 1 below.

Table 1: Summary of research results classified by procurement methods

<table>
<thead>
<tr>
<th>Design & Build office procured projects</th>
<th>Univariate tool</th>
<th>Constructi on costs (in £000’s)</th>
<th>Constructi on duration (weeks)</th>
<th>Constructi on speed (m²/week)</th>
<th>Unit Cost (Cost/m²)</th>
<th>Intensity (cost/area /wk)</th>
<th>Gross Floor Area (in m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>2,786</td>
<td>43</td>
<td>53</td>
<td>1,134</td>
<td>26</td>
<td>2,690</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>4,018</td>
<td>47</td>
<td>63</td>
<td>1,184</td>
<td>27</td>
<td>3,057</td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>4,316</td>
<td>18</td>
<td>38</td>
<td>353</td>
<td>8</td>
<td>2,330</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Traditional method office procured projects</th>
<th>Univariate tool</th>
<th>Constructi on costs (in £000’s)</th>
<th>Constructi on duration (weeks)</th>
<th>Constructi on speed (m²/week)</th>
<th>Unit Cost (Cost/m²)</th>
<th>Intensity (cost/ m²/week)</th>
<th>Gross Floor Area (in m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>1,157</td>
<td>39</td>
<td>22</td>
<td>1,453</td>
<td>36</td>
<td>758</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>1,683</td>
<td>41</td>
<td>29</td>
<td>1,413</td>
<td>40</td>
<td>1,311</td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1,773</td>
<td>16</td>
<td>24</td>
<td>300</td>
<td>19</td>
<td>1,522</td>
<td></td>
</tr>
</tbody>
</table>
Construction cost in this research is defined as the tender cost of the office project represented by the winning tender sum. Unit cost and intensity are the two cost measures used to further analyse construction costs. Unit cost is defined as tender cost/gross floor area. Construction intensity is the unit cost of construction per unit time. Construction speed is the gross floor area/construction duration.

The null hypotheses postulated in the paper are that there are no differences in unit costs, construction speeds and intensity of construction for the 2 procurement methods while the alternative hypotheses postulated stated that there are differences in the performance metrics measured. Each sample mean for the 2 procurement methods was tested for comparison at a 95% confidence level (p=0.05). Therefore no significance is reported unless test values achieve this level of significance. Since one of the 2 samples used in this research is small (less than 30) and since the researcher wanted to test whether one mean of each of the procurement methods performance metrics is significantly higher or significantly lower than the other a one-tailed t test was deemed appropriate.

The null hypotheses were rejected in favour of the alternative hypotheses as the observed differences of the sample means of the 2 procurement methods were all found to fall outside the acceptance region of the critical t value. It can therefore be inferred from the research results that D&B tendered office projects achieved significantly lower unit costs than similar projects tendered through the traditional method. D&B tendered projects significantly outperformed tendered office projects procured using the traditional method with 63% of the D&B projects achieving scores over 60 m²/week compared to only 14% of the traditional projects. Significant differences in intensity of construction were also observed between the 2 procurement methods with over half of the office of the traditional projects scoring almost twice as much as their D&B counterparts.

3.1 Unit costs of construction (Total tender cost/m²)

Average unit costs for the projects reviewed were observed to be in the range £1,255 - £1,505/m². This is the classification of unit costs in which the greatest number of projects analysed fall (in this case £1,255-£1,505) was classified as representing average unit cost range of the projects analysed. Unit costs below this range were classified as relatively low and those above the observed average range were classified as relatively high. Table 2 below tabulates the results.
Table 2: Unit cost of construction per procurement method

<table>
<thead>
<tr>
<th>Unit cost (cost/m²)</th>
<th>Design & Build (Nr of jobs)</th>
<th>% of all D&B projects</th>
<th>Traditional (Nr of jobs)</th>
<th>% of all Traditional projects</th>
<th>Total nr of all projects</th>
<th>As a % of Total of all projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-250</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>251-501</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>502-752</td>
<td>1</td>
<td>3%</td>
<td>0</td>
<td>0%</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>753-1,003</td>
<td>10</td>
<td>29%</td>
<td>2</td>
<td>14%</td>
<td>12</td>
<td>0%</td>
</tr>
<tr>
<td>1,004-1,254</td>
<td>10</td>
<td>29%</td>
<td>2</td>
<td>14%</td>
<td>12</td>
<td>0%</td>
</tr>
<tr>
<td>1,255-1,505</td>
<td>10</td>
<td>29%</td>
<td>7</td>
<td>50%</td>
<td>17</td>
<td>0%</td>
</tr>
<tr>
<td>1,506-1,756</td>
<td>3</td>
<td>9%</td>
<td>1</td>
<td>7%</td>
<td>4</td>
<td>0%</td>
</tr>
<tr>
<td>1,757-2,007</td>
<td>0</td>
<td>0%</td>
<td>1</td>
<td>7%</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>2,008-2,258</td>
<td>0</td>
<td>0%</td>
<td>1</td>
<td>7%</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>>2,259</td>
<td>1</td>
<td>3%</td>
<td>0</td>
<td>0%</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>Totals</td>
<td>35</td>
<td>100%</td>
<td>14</td>
<td>100%</td>
<td>49</td>
<td>100%</td>
</tr>
</tbody>
</table>

A summary of the unit cost classifications by procurement method is further tabulated below in Table 3 below.

Table 3: Unit costs by procurement method

<table>
<thead>
<tr>
<th>Classification</th>
<th>% D&B projects</th>
<th>% of Traditional projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relatively low</td>
<td>60%</td>
<td>29%</td>
</tr>
<tr>
<td>Average costs</td>
<td>29%</td>
<td>50%</td>
</tr>
<tr>
<td>Relatively high</td>
<td>11%</td>
<td>21%</td>
</tr>
</tbody>
</table>

Similar observations were done for construction speed and intensity of construction. Similarly projects were classified as average, below and above average depending on the classification range. The findings for these performance metrics are presented in Tables 4 and 5 below.

3.2 Construction speed

Average construction speed for the projects reviewed was observed to be in the range of 21 - 41 m² per week. Any construction speed below this average was classified as relatively slow and any construction speed above this average was classified as relatively high.
Table 4: Construction speed by procurement method

<table>
<thead>
<tr>
<th>Classification</th>
<th>% D&B projects</th>
<th>% of Traditional projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relatively slow</td>
<td>9%</td>
<td>50%</td>
</tr>
<tr>
<td>Average</td>
<td>29%</td>
<td>36%</td>
</tr>
<tr>
<td>Relatively fast</td>
<td>62%</td>
<td>14%</td>
</tr>
</tbody>
</table>

3.3 Construction intensity

Similarly average construction intensity range was observed to be £24-£29/ m²/week. Observed construction intensities lower than the averages were classified as relatively low and construction intensities higher than the average were classified as high. Table 5 below presents a summary of the results.

Table 5: Construction intensity by procurement method

<table>
<thead>
<tr>
<th>Classification</th>
<th>% D&B projects</th>
<th>% of Traditional projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relatively low</td>
<td>29%</td>
<td>7%</td>
</tr>
<tr>
<td>Average</td>
<td>40%</td>
<td>29%</td>
</tr>
<tr>
<td>Relatively high</td>
<td>31%</td>
<td>64%</td>
</tr>
</tbody>
</table>

4.0 Interrelationships between observed attributes

In addition to identification and classification of research results as aforestated several time/cost/size relationships over the six year period of analysis were undertaken to gain more insight into interrelationships between observed project performance metrics and other attributes such as project size and year of tender. These relationships are presented below.
Construction speeds were observed to be significantly faster with increased project size on D&B tendered projects while on traditional tendered projects the relationship is not as significant. Further it can be observed that traditional projects above 5,500 m² in size start to achieve lower construction speeds than similar size projects procured through the D&B method.
From the above graphical representations it would appear that unit costs gradually reduce with increased project size in traditionally procured projects while the trend is the opposite for D&B procured projects. This may be attributable to the perception that as projects increase in complexity and size unit costs increase as contractors employ sophisticated methods to deal with increased complexity.
It can be observed from the above Figures 6 and 7 that while D&B tendered projects maintained a relatively steady trend up to the year 2005 and then dropping from late 2006 up to 2009 the trend was different in traditional projects where construction speeds were dipping from 2005 to 2006 but then started to increase from 2007 through to year 2009.
From the above Figures 8 and 9 it can be observed that since 2003 unit costs for both procurement methods have been steadily increasing with the traditional procurement method showing significant increases up to 2007 and started to gradually drop in the period between 2008 and 2009.
5. Research limitations/implications

Data in this research was based on tender base information in terms of project construction costs and durations. The research therefore did not track changes post contract. Such changes play a key role in performance measurement of procurement systems in terms of cost growth and programme growth. Future research should therefore encompass not only the pre-contract project performance data but also post contract project performance data such as client satisfaction, cost predictability and time predictability associated with different procurement methods. In addition quality performance metric measurements were not taken into account which does have impacts on construction speed, intensity of construction and unit costs. Design phase durations were also not taken into account in the measurement of durations used in the research.

6. Practical implications

The selection of an appropriate procurement method is crucial to the successful performance of a construction project with regards to not only cost and time (as analysed in this research) but quality achieved as well. It also ensures a smooth project delivery process and eliminates problems during construction. The research provides comparative quantitative data that should assist project developers to make decisions on procurement strategy and methods. The fact that the research has used a longitudinal section of the sampled data (samples covering 6 years) means that the research results will help foster a better understanding of the role played by procurement method on cost and time attributes.

7. Conclusions

The research presented in this paper is part of an ongoing professional doctorate research to comparatively analyse performance of different procurement methods used to deliver office projects in central London in the last 5 years. Primary data based on a combination of mailed questionnaires and semi-structured interviews are currently being collected in order to address the overall aims and objectives of the main research.

The primary goal of this research however was to undertake a comparative analysis of different procurement methods used in successful tendered office projects in the UK over the
last 6 years commencing in 2003. To achieve this goal secondary data from the BCIS was
categorised and examined. The research results presented indicate that D&B procured projects
out performed traditional projects in terms of unit costs, construction speed and intensity of
construction. This was supported by statistical tests performed on the research results.
However using trend analysis further key findings and patterns were identified and presented
graphically. This further analysis show that unit costs associated with traditional projects in
the later parts of 2009 appear to be reducing to those levels that were observed in D&B
projects. Similarly construction speeds for both D&B and traditional projects tendered in the
later parts of year 2009 were not dissimilar. Again while unit costs for traditional projects
gradually reduce with increased project size the effect is different on D&B projects whose
observed unit costs seem to have been increasing with increase in project size.
References

Ireland, V. (1983). The role of managerial actions in the cost, time and quality performance of high risk commercial projects, Unpublished PhD, University of Sydney, New South Wales, Australia.

