Linking Sustainable urban Drainage Systems (SuDS) and ecosystem services: new connections in urban ecology

Chunglim Mak¹, Philip James¹, and Miklas Scholz²

¹Ecosystems & Environment Research Centre, School of Environment & Life Sciences, Peel Building
²Civil Engineering Research Centre, School of Computing, Science and Engineering, Newton Building
Current Situation
My experience - A2B
Blackridge Station Car park
Gap in current research
Research Approach

To critically evaluate Sustainable urban Drainage Systems in terms of the emerging ecosystem services paradigm.

A new way to link SuDS and ecosystem services.

Collect data to verify the links between SuDS and ecosystem services.

Data analysis to quantify the SuDS techniques and sites examined.

Extrapolate the findings for the analysis of land use changes in a city scale.
Key drivers for sustainability in urban drainage

- The impacts of urbanisation on hydrological processes.
 - Impermeable surfaces result in increased runoff and earlier arrival of stormwater to river.
 - Rapid rise and fall of peak discharge – sudden flooding of river.

(Butler and Davies, 2011)
Key drivers for sustainability in urban drainage 2

- Water quality deterioration due to urban diffuse pollution.
- Climate change increases risk of flooding.
Key legislations for sustainability in urban drainage

• 2000 – Water Framework Directive
 o All urban surface runoffs has to be controlled so that their impact to the receiving environment is mitigated.
 o Transposed into UK National legislation in Dec 2003.

• 2004 – Making space for water (England)
 o Government consultation on future flood risk management.

 o Flood risk management hierarchy: assess, avoid, substitute, control (SuDS), mitigate.
SuDS

Prevention

Usages – e.g. flushing toilets, washing clothes

Sewerage system

Source control – e.g. green roofs

Site control – e.g. pervious pavements, swales

Regional control – e.g. ponds, wetlands

Wastewater treatment

Natural Water Bodies (including groundwater bodies)

Symbol	Evaporation	Precipitation	Runoffs from roofs and impermeable surfaces	SuDS Conveyance – e.g. filter strips, swales	Conveyance to Wastewater treatment	Conveyance to Usages	Connections to Natural Water Bodies
Explanation | Evaporation | Precipitation | Runoffs from roofs and impermeable surfaces | SuDS Conveyance – e.g. filter strips, swales | Conveyance to Wastewater treatment | Conveyance to Usages | Connections to Natural Water Bodies
SuDS types

<table>
<thead>
<tr>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainwater Harvesting</td>
</tr>
<tr>
<td>Pervious pavements</td>
</tr>
<tr>
<td>Filter strips</td>
</tr>
<tr>
<td>Swales</td>
</tr>
<tr>
<td>Green roofs</td>
</tr>
<tr>
<td>Ponds</td>
</tr>
<tr>
<td>Infiltration basins and trenches</td>
</tr>
<tr>
<td>Wetlands</td>
</tr>
<tr>
<td>Underground storage</td>
</tr>
<tr>
<td>Bioretention</td>
</tr>
<tr>
<td>SuDS type</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>Rainwater Harvesting</td>
</tr>
<tr>
<td>Pervious pavements</td>
</tr>
<tr>
<td>Filter strips</td>
</tr>
<tr>
<td>Swales</td>
</tr>
<tr>
<td>Green roofs</td>
</tr>
<tr>
<td>Ponds</td>
</tr>
<tr>
<td>Infiltration basins and trenches</td>
</tr>
<tr>
<td>Wetlands</td>
</tr>
<tr>
<td>Underground storage</td>
</tr>
<tr>
<td>Bioretention</td>
</tr>
</tbody>
</table>

Ecosystem Services

- **Supporting**: Habitat for species
- **Provisioning**: Food, Fresh water, Raw material
- **Regulating**: Groundwater recharge, Flood mitigation, Water purification, Local climate and air quality regulation (including Urban Heat Island Mitigation), Global climate and green house gas regulation (including carbon sequestration), Pollination
- **Cultural**: Recreation, Education, Aesthetic
Ecosystem Services 1

Provisions from the natural environment that are beneficial to human beings.

• 1997 – Gretchen C. Daily et. al.
 o Introduction to ecosystem services

• 1997 – Robert Costanza et. al.
 o A table listing 17 major categories of ecosystem services and functions.

• 2002 – Rudolf S. de Groot et. al.
 o A framework diagram and a table distinguishing between ecosystem functions, processes, goods and services.

• 2005 – Millennium Ecosystem Assessment (MEA)
 o Four categories: supporting, provisioning, regulating, and cultural.
Ecosystem Services 2

• 2007 – Boyd and Banzhaf
 o Started to distinguish ecosystem services and ecosystem processes.

• 2010 – The Economics of Ecosystems and Biodiversity (TEEB)
 o Four categories: habitat or supporting, provisioning, regulating, and cultural.
 o Excluded ecosystem processes such as primary production and water cycle.

• 2011 – UK National Ecosystem Assessment (UK NEA)
 o Three categories: provisioning, regulating, and cultural.
 o Excluded supporting services.

• 2011 – Bastiana et. al.
 o Further divide ecosystem services as properties, potentials and services.
For this research

Supporting
Habitat for species

Provisioning
Food, fresh water, raw material

Regulating
Groundwater recharge, flood mitigation, water purification, local climate and air quality regulation, global climate and greenhouse gas regulation, pollination

Cultural
Recreation, education, aesthetics

(Costanza et al., 1997; Daily, 1997; Groot et al., 2002; MEA, 2005; TEEB, 2010; World Resources Institute, 2010; UK NEA, 2011)
Ecosystem services indicators – 1

Habitat for species

Pollination

Biodiversity

Landcover

Habitat diversity

Availability of pollinators
Ecosystem services indicators – 3

- Global climate and greenhouse gas regulation
 - Landcover
 - Carbon content and rate of accumulation
 - Carbon stocked
 - Leaf area index
 - Green volume
 - Cool air production

- Local climate and air quality regulation
Any questions?