Skip to the content

The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium

Roach, D, Ross, DK, Gale, JD and Taylor, JW 2013, 'The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium' , Journal Of Applied Crystallography, 46 , pp. 1755-1770.

PDF - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview
PDF (Supplementary Information) - Published Version
Download (1MB) | Preview


A new approach to the interpretation and analysis of coherent inelastic neutron scattering from polycrystals (poly-CINS) is presented. Here we describe a simulation of the one-phonon coherent inelastic scattering from a lattice model of an arbitrary crystal system. The one-phonon component is characterized by sharp features e.g. determined by boundaries of the (Q, omega) regions where one-phonon scattering is allowed. These features may be identified with the same features apparent in the measured total coherent inelastic cross-section, the other components of which(multiphonon or multiple scattering) show no sharp features. The parameters of the model can then be relaxed to improve the fit between model and experiment. This method is of particular interest where no single crystals are available. To test the approach, we have measured the poly-CINS for polycrystalline aluminium using the MARI spectrometer (ISIS) because both lattice dynamical models and measured dispersion curves are available for this material. The models used include a simple Lennard-Jones model fitted to the elastic constants of this material plus a number of Embedded Atom Method (EAM) force fields. The agreement obtained suggests that the method demonstrated should be effective in developing models for other materials where single crystal dispersion curves are not available.

Item Type: Article
Uncontrolled Keywords: polycrystalline; coherent inelastic neutron scattering
Themes: Energy
Schools: Schools > School of Computing, Science and Engineering
Schools > School of Computing, Science and Engineering > Salford Innovation Research Centre (SIRC)
Journal or Publication Title: Journal Of Applied Crystallography
Publisher: Blackwell Publishing
Refereed: Yes
ISSN: 0021-8898
Funders: Engineering and Physical Sciences Research Council (EPSRC)
Depositing User: Prof D. Keith Ross
Date Deposited: 27 Aug 2013 11:58
Last Modified: 30 Nov 2015 23:55
References: Born, M. & Huang, K. (1956). Dynamical Theory of Crystal Lattices, Oxford University Press, Oxford. Budi, A., Henry, D. J., Gale, J. D., Yarovsky, I. (2009). J. Phys.: Condens. Matter 21 144206. Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. J., Refson, K. and Payne M. C. (2005). Zeitschrift Fur Kristallographie 220(5-6), 567. Cleri, F. & Rosato, V. (1993). Phys. Rev. B 48 22. DANSE project. Software (2010). URL: Daw, M. S. & Baskes, M. I. (1983). Phys. Rev. Lett. 50 1285. Egelstaff, P. A. & Poole M. J. (1969). Experimental Neutron Thermalisation, Pergamon Press. Gale, J. D. & Rohl, A. L. (2003). Molecular Simulation, 29, 291-341. Gilat, G. & Nicklow, R. M. (1966). Phys Rev, 143, 487. Accepted for Journal of Applied Crystallography (2013) 31 Hafner, J. & Schmuck, P. (1974) Phys Rev B, 9, 4138. Halicio!lu, T. & Pound, G. M. (1975). Phys. Stat. Sol. 30, 619. Jasper, A. W., Schultz, N. E., Truhlar, D. G. (2005). J. Phys. Chem. B 109 3915 (2005) Kang, J. K., Ylee, J., Muller, R. P., Goddard, W. A. (2004). J. Chem. Phys. 121 10623. Kearley, G. J. (1995) Nucl. Instr. and Meth. in Phys. Res. A 354, 53-58 Lefmann, K. & Nielsen, K. (1999). Neutron News 10, 20. Lennard-Jones J. E. & Ingham, A. E. (1925). Proc. Roy. Soc A107, 636. MANTID project. Software (2012) URL: Mei, J. & Davenport, J. W. (1992). Phys. Rev. B 46 21. Mitchell, P. C. H., Parker, S. F. Ramirez-Cuesta, A. J. and Tomkinson, J. (2005) Vibrational Spectroscopy with Neutrons, World Scientific, Singapore. Mishin, Y., Farkas, D., Mehl, M. J., Papaconstantopoulos, D. A. (1999). Phys Rev B, 59, 3393. Nye, J. F. (1957) Physical Properties of Crystals, Oxford University Press. Parlinski, K. (2003). PHONON software. Pham, H. H., Williams, M. E., Mahaffey, P., Radovic, M., Arroyave, R., Cagin, T. (2011). Phys. Rev. B 84, 064101. Roach, D. L., Ross, D. K., Gale, J. D. (2007). Neutron News 18 21. Roach, D. L., PhD Thesis (2006), University of Salford. Roach, D. L., Heuser B., Ross, D. K., Garba, M. T., Baldissin, G., Gale, J.D., Abernathy, D. L. (2013). Experimental determination of the Q-dependence of in-plane vibrations in graphite – in preparation. Roach, D. L., Parker, S.F., Ross, D.K., Gonzalez-Velez, H. M.T.Garba, Gale, J.D., Russina, M. and Bewley, R. I.(2013). The application of poly-CINS to the assignment of vibrational modes in polycrystalline C60 – in preparation. Buckley, A., Roach, D. L., Garba, M.T. , Buckley, C.E. Ross, D.K., Gale, J.D., Sheppard, D.A. and Taylor, J. W., (2013). A Q-dependent model for the vibrational modes in MgD2 using poly-CINS - in preparation. Ross, D.K. (1973). J. Phys. C 6, 3525. Sanchez-Portal, D., Artacho, E., Soler, J. M. (1995). Solid State Commun. 95, 685. Schuth, F., Bogdanovic, B., Felderhoff, M. (2004). Chem. Commun. 20 2249. Sheng, H. W., Kramer, M. J., Cadien, A., Fujita, T., Chen M. W. (2011). Phys. Rev. B 83, 134118. Stedman, R. & Nilsson, G. (1966). Phys Rev. 162, 549. Streitz, F. H. & Mintmire, J. W. (1994). Phys. Rev. B 50 11996. Squires, G. L. (1978). Introduction to the Theory of Thermal Neutron Scattering Cambridge University Press. Sutton, A. P. & Chen, J. (1990). Phil. Mag. Lett. 61 139. Tang, X., Li, C. W., Fultz, B. (2010). Phys. Rev. B 82, 184301. Taylor, A. D., Arai, M., Bennington, S. M., Bowden, Z. A., Osborn, R., Andersen, K. et al (1991). Proc. ICANS XI, Tsukuba, KEK Report 90-25. Turchin, V. F. (1965). Slow Neutrons IPST, Jerusalem. Van Hove, L. (1954). Phys. Rev. 95, 249. Willendrup, P., Farhi E. and Lefmann K. (2004). Physica B, 350 735.

Actions (login required)

Edit record (repository staff only) Edit record (repository staff only)


Downloads per month over past year