Unstable cavity lasers - from kaleidoscopes to snowflakes

Christian, JM, Begleris, I, McDonald, GS and Huang, JG

<table>
<thead>
<tr>
<th>Title</th>
<th>Unstable cavity lasers - from kaleidoscopes to snowflakes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Christian, JM, Begleris, I, McDonald, GS and Huang, JG</td>
</tr>
<tr>
<td>Type</td>
<td>Conference or Workshop Item</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/32861/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2014</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Unstable cavity lasers – from kaleidoscopes to snowflakes

J.M. Christian,¹ I. Begleris,¹ G.S. McDonald,¹ J.G. Huang²

¹ University of Salford, Materials & Physics Research Centre, Greater Manchester, M5 4WT, United Kingdom
² University of Glamorgan, Faculty of Advanced Technology, Pontypridd, CF37 1DL, United Kingdom
email: j.christian@salford.ac.uk

Summary

The snowflake laser is proposed – a new class of unstable resonator whose feedback mirror has the shape of the von Koch snowflake. Theoretical analysis is undertaken with two-dimensional virtual source theory, and predictions of novel mode patterns, eigenvalue spectra, and convergence phenomena are presented.

Unstable resonators: kaleidoscope lasers

Unstable cavity lasers have linear resonators with inherent magnification whose mode patterns possess fractal characteristics (proportional levels of detail across decimal orders of spatial scale) [1]. The origin of fractality in strip resonators has been explained by considering repeated diffraction of the circulating field at the feedback mirror (which subsequently plays a key role in determining mode characteristics) [2]. Kaleidoscope lasers involve fully two-dimensional (2D) transverse geometries where the feedback mirror has the shape of a regular polygon [3].

Previously, we have analyzed cavities with a full range of kaleidoscopic symmetries by deploying a 2D generalization of Southwell's virtual source (VS) theory [4] and exact mathematical descriptions of edge-wave patterns diffracted from a set of (virtual) polygonal apertures [5]. The 2D-VS approach is semi-analytical, and has several distinct advantages over more traditional Fox-Li methods (which are based on paraxial ABCD matrix optics and fast Fourier transforms [6]). For example, one application predicts the entire spectrum of modes while Fox-Li, in contrast, yields only one pattern per application and higher-order modes are notoriously difficult to compute. Moreover, 2D-VS theory allows us to accurately describe systems with arbitrary cavity parameters (i.e., the equivalent Fresnel number \(N_{\text{eq}} \) and round-trip magnification \(M \) – see Fig. 1). Previous studies have been restricted to regimes with \(N_{\text{eq}} = O(1) \) (using purely-numerical methods [6]) or \(N_{\text{eq}} \gg O(1) \) (in which case the mode patterns may be approximated using asymptotic methods [7]).

Fig. 1. Top row: 2D-VS computations of the lowest-loss mode patterns for kaleidoscope lasers. Bottom row: magnification of the central portion of the corresponding pattern (the Fox-Li method cannot facilitate such a calculation). Cavity parameters: \(N_{\text{eq}} = 20 \) and \(M = 1.5 \).
Unstable resonators: snowflake lasers

Here, we propose a new class of unstable resonator and introduce the snowflake laser. This novel system has a feedback mirror whose shape corresponds to a classic fractal curve – the von Koch snowflake (an iterated function system involving self-similar sequences of equilateral triangles – see Fig. 2). As such, we consider a cavity whose modes are inherently fractal, and where successive round trips involve the interplay of the re-circulated fractal light beam with a fractal aperturing element.

In this presentation, we will show how the 2D-VS method deployed for modelling kaleidoscope geometries can be applied to the snowflake laser (see Fig. 3). A pivotal development has been a reformulation of the Fresnel diffraction problem for snowflake apertures using a line integral [5]. The eigenvalue spectra of this new class of unstable resonator will also be detailed, along with convergence phenomena concerning pre-fractal snowflake elements. Finally, preliminary results from dimension calculations using specialist fractal analysis software [8] will be reported.

References