Multi-turing instabilities in Fabry-Perot resonators and discrete microcavities

Bostock, C, Christian, JM, McDonald, GS, Leite, AB and Huang, JG

<table>
<thead>
<tr>
<th>Title</th>
<th>Multi-turing instabilities in Fabry-Perot resonators and discrete microcavities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Bostock, C, Christian, JM, McDonald, GS, Leite, AB and Huang, JG</td>
</tr>
<tr>
<td>Type</td>
<td>Conference or Workshop Item</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/32863/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2014</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Multi-Turing instabilities in Fabry-Pérot resonators and discrete microcavities

C. Bostock, J.M. Christian, G.S. McDonald, A.B. Leite, J.G. Huang

1 University of Salford, Materials & Physics Research Centre, Greater Manchester, M5 4WT, United Kingdom
2 University of Glamorgan, Faculty of Advanced Technology, Pontypridd, CF37 1DL, United Kingdom
email: j.christian@salford.ac.uk

Summary

We report on research concerning spontaneous spatial fractal pattern formation in passive nonlinear optical cavities (both ring-resonator and Fabry-Pérot geometries). A new model for light propagation inside discrete coupled cavities is proposed and we predict, for the first time, a multi-Turing instability spectrum for such a system.

Turing instabilities: single vs. multiple minima

Alan Turing's seminal analysis of morphogenesis [1] was ahead of its time and laid the foundations for a modern understanding of the origin of pattern and form in Nature. He discovered that when a class of reaction-diffusion system is sufficiently stressed, arbitrarily-small disturbances to its uniform states may give rise to spontaneous self-organization into a simple pattern whose dominant scale-length is (inversely) related to the minimum in the threshold instability spectrum.

Turing's single-minimum mechanism plays a key role in describing simple pattern emergence in, for example, nonlinear optical models [2]. However, there also exists a class of system whose threshold instability spectrum comprises a hierarchy of many comparable minima. We have proposed that such a multiple-minimum characteristic may provide a universal signature for predicting a system's innate capacity to generate spontaneous spatial fractals (that is, patterns possessing proportional levels of detail spanning decimal orders of scale-length) [3].

Continuous cavities: from ring resonator to Fabry-Pérot

Recently, we demonstrated that the same multi-Turing instability signature predicting spontaneous fractal patterns in the classic single feedback-mirror system [3] was also present in a ring cavity containing a thin slice of diffusive material that may be either dispersive or purely-absorptive [4]. This key result has provided strong supporting evidence that the multiple-minimum signature has independence with respect to the details of the system nonlinearity. More recently, we have considered a Fabry-Pérot (FP) cavity [see Fig. 1(a)] to capture a different type of feedback loop. Even a simple model epitomizes complexity through the interplay between diffraction,
Diffusion, nonlinearity, counter-propagation, and a host of cavity effects. Here, the FP geometry will be reported to possess a multi-Turing instability spectrum [see Fig. 1(b)], and simulations have revealed that the mechanism for simple and fractal pattern emergence exists with both one and two transverse dimensions (see Fig. 2).

Discrete cavities: Multi-Turing spectra & spatial patterns

We have also revisited the classic discrete nonlinear Schrödinger (dNLS) equation [5] with a view to modelling spatial patterns in coupled microcavities. While other authors have considered a mean-field approach to the related problem of cavity solitons [6,7], we retain the traditional boundary condition for capturing lumped ring-resonator feedback [8] (the mean-field limit tends to suppress the possibility of multi-Turing spectra). Linear analysis has investigated the susceptibility of the stationary states of the dNLS cavity to spontaneous pattern-forming instabilities, and predicted a multi-Turing threshold spectrum (see Fig. 3). An overview of simulation results illustrating pattern emergence will be given.

Fig. 2. Simulation of pattern formation in a simple model of a dispersive nonlinear FP cavity. Top row: simple pattern emergence, where the perturbed plane wave (stationary) state evolves into a static hexagon pattern. Bottom row: evolution of a hexagon pattern toward a fractal.

Fig. 3. Two typical examples of multi-Turing threshold instability curves for coupled cavities based on the discrete nonlinear Schrödinger equation for (a) self-focusing ($\chi_L = +1$) and (b) self-defocusing ($\chi_L = -1$) Kerr-type materials. The spectrum is 2π-periodic in θ, and in the long-wave limit (given by $KD \to 0$) one recovers the classic continuum result corresponding to the NLS in a ring cavity [8] (as must be the case).

References