An investigation into the diversity of genes of the innate immune system in the European Badger (*Meles meles*) and possible associations with trypanosome infection.

Volume 1 of 1

Submitted by Andrew Mason Whiteoak
For the Qualification of Master of Science by Research
2015

The University of Salford
School of Environment and Life Sciences
Table of Contents

1.0 Introduction 1
 1.1 The European Badger *Meles meles* 1
 1.1.1 Badgers and their role as Reservoirs for Infection 1
 1.1.2 Badger Evolutionary History 5
 1.1.3 Badger Ecology 7
 1.2 Trypanosomes 9
 1.2.1 Trypanosome Infection in Humans 9
 1.2.2 Trypanosomes in Other Species 16
 1.2.3 *Trypanosoma pestanai*, parasite of the Badger 17
 1.2.3.1 The Intermediate Host; *Paraceris melis* 19
 1.2.3.2 Other Endoparasites Found in Badgers 22
 1.3 The Mammalian Immune System 24
 1.3.1 Toll-like Receptors 24
 1.3.2 TLRs and Their Interactions with Trypanosomes 30
 1.4 Badger TLRs – The Missing Link 32
2.0 Research Methods 33
3.0 Results 38
 3.1 Laboratory Analytical and Refinement Processes 38
 3.2 Sequencing and Analysis of TLRs 66
 3.3 Variation in relation to Trypanosome Infection 82
 3.4 Comparing Badger TLR Sequences with Those of Other Species 85
4.0 Discussion 95
5.0 References 110
Acknowledgements

I would like to offer my deepest gratitude for the help given by the following people. My supervisor, Geoff Hide; always eager to help, encouraging and all together a great friend as well as advisor. Working alongside me in labs, my good friend Eze Justin Ideozu. I found in Justin a like mind, and a passionate scientist. Members of the technical team at the University of Salford have helped me with all aspects of my research; sourcing the best deals on lab supplies; providing, maintaining and advising on equipment; and giving expert scientific advice; all the time showing an obvious love for what they do - Belgees Boufana, Helen Bradshaw, Tony Bodell, Cath Hide, Sally Shepherd and Arlene Armstrong. Alex Tomlinson and Richard Delahey at Woodchester Park provided the majority of samples used in this research. Pauline Kidner, Elizabeth Mullineux and Sara Cowen at Secret World Wildlife Rescue provided blood samples taken from badger cubs rescued during the 2013 Somerset floods and from cull zones across the country. Eamonn Gormley from University College Dublin, provided samples from his on-campus badger cohort. The Leicestershire and Rutland Badger Group along with the family of the late Bill Cunnington were very kind in awarding me a substantial grant which allowed me to attend the 2014 Badger Trust Conference. Finally, I would like to thank my girlfriend, Jamie Angus, for her encouragement and great home cooking, and her children, Hazel and Mike, for giving me such a wonderful family.

This thesis is dedicated to the memory of Seamus ‘No Second Troy’ Black 17.01.03 - 24.01.14
Abstract

Toll-like receptor (TLR) genes encode for conserved proteins of the innate immune system which trigger pathways in response to pathogen invasion by recognising molecules essential for endoparasite survival. An endoparasite lives within the host and relies upon the host for its nutrition, here we consider it a pathogen when its presence causes detriment to the host. A pathogen is broadly anything which causes disease; causing specific symptoms in a specific location – in this case the symptoms would be the innate immune response to the parasite at its location, which would inevitably divert host energies to the creation of innate immune molecules. TLR genetic variation is rare and small mutations, such as single nucleotide polymorphisms (SNPs), can be correlated with enhanced disease resistance in some hosts. This research investigates TLR sequence diversity in European Badger (Meles meles) populations across the UK and possible associations with trypanosome infection. DNA from a collection of badgers from Woodchester Park, and other UK sites were available for investigation. As no badger TLR sequences were available or published, five PCR primer sets were successfully designed, using closely related species, to amplify the full badger TLR2 exon and exon 3 of TLR4. Sixty-one and fifty-nine badgers were sequenced across TLR2 and TLR4 (exon 3) respectively. Three TLR2 amino acid haplotype variants were found with two linked and one unlinked. No polymorphisms were found in the same badgers for TLR4. There was no significant relationship of polymorphism with trypanosome infection. Badgers ranging from St. Ives to Birmingham were found to be highly homogeneous with respect to TLR DNA sequence variation, and such low level variation was highly unusual in comparison to other TLR population studies.