Skip to the content

Red mud as a carbon sink : variability, affecting factors and environmental significance

Si, C, Ma, Y and Lin, C 2012, 'Red mud as a carbon sink : variability, affecting factors and environmental significance' , Journal of Hazardous Materials, 245 , pp. 54-59.

[img] PDF - Published Version
Restricted to Repository staff only

Download (349kB) | Request a copy


The capacity of red mud to sequester CO2 varied markedly due to differences in bauxite type, processing and disposal methods. Calcium carbonates were the dominant mineral phases responsible for the carbon sequestration in the investigated red mud types. The carbon sequestration capacity of red mud was not fully exploited due to shortages of soluble divalent cations for formation of stable carbonate minerals. Titanate and silicate ions were the two major oxyanions that appeared to strongly compete with carbonate ions for the available soluble Ca. Supply of additional soluble Ca and Mg could be a viable pathway for maximizing carbon sequestration in red mud and simultaneously reducing the causticity of red mud. It is roughly estimated that over 100 million tonnes of CO2 have been unintentionally sequestered in red mud around the world to date through the natural weathering of historically produced red mud. Based on the current production rate of red mud, it is likely that some 6 million tonnes of CO2 will be sequestered annually through atmospheric carbonation. If appropriate technologies are in place for incorporating binding cations into red mud, approximately 6 million tonnes of additional CO2 can be captured and stored in the red mud while the hazardousness of red mud is simultaneously reduced.

Item Type: Article
Schools: Schools > School of Environment and Life Sciences > Ecosystems and Environment Research Centre
Journal or Publication Title: Journal of Hazardous Materials
Publisher: Elsevier
ISSN: 0304-3894
Related URLs:
Funders: Non funded research
Depositing User: C Lin
Date Deposited: 22 Mar 2016 14:12
Last Modified: 22 Mar 2016 14:12

Actions (login required)

Edit record (repository staff only) Edit record (repository staff only)


Downloads per month over past year