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Learning cost-sensitive Bayesian networks
via direct and indirect methods

Eman Nashnush and Sunil Vadera∗
The School of Computing, Science and Engineering, University of Salford, Manchester, UK

Abstract. Cost-sensitive learning has become an increasingly important area that recognizes that real world classification prob-
lems need to take the costs of misclassification and accuracy into account. Much work has been done on cost-sensitive decision
tree learning, but very little has been done on cost-sensitive Bayesian networks. Although there has been significant research
on Bayesian networks there has been relatively little research on learning cost-sensitive Bayesian networks. Hence, this paper
explores whether it is possible to develop algorithms that learn cost-sensitive Bayesian networks by taking (i) an indirect ap-
proach that changes the data distribution to reflect the costs of misclassification; and (ii) a direct approach that amends an existing
accuracy based algorithm for learning Bayesian networks.An empirical comparison of the new approaches is carried out with
cost-sensitive decision tree learning algorithms on 33 data sets, and the results show that the new algorithms perform better in
terms of misclassification cost and maintaining accuracy.
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1. Introduction

The ability to learn classifiers has been one of the
major success stories of AI [13,36], with a wide range
of methods such as neural networks, decision tree in-
duction, support vector machines, and Bayesian net-
works utilised in many real world applications such
as fraud detection, assessing credit, cyber security and
medical diagnosis [1,24,37].

Early machine learning algorithms, now termed
cost-insensitive learning algorithms, focused on maxi-
mizing accuracy but did not take any type of costs into
account [20]. Several authors have noted that this is
not adequate for practical applications [7,18]. For ex-
ample, in medical diagnosis applications, the cost of a
false positive error includes unnecessary treatment and
unnecessary worry while the cost of a false negative
error includes postponed treatment or failure to treat
and death or injury [28]. In fraud detection applica-
tions, a false positive error can lead to resources being
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Table 1
A cost matrix for two-class problems

Predicting class Actual class
Actual positive Actual negative

Predicting positive TP = 0 FP = £1
Predicting negative FN = £50 TN = 0

wasted investigating non-frauds and reducing the ben-
efits; while a false negative error such as a failure to
detect fraud could be very expensive [25].

Hence, in recent years, a significant level of atten-
tion has been paid to cost-sensitive learning, including
making accuracy-based learners cost-sensitive [18].
Cost-sensitive learning algorithms take costs into con-
sideration and aim to minimize expected cost [16]. The
following example illustrates the use of a cost matrix
together with some of the key ideas. Table 1 presents
an example cost matrix, where Ci,j is the cost of pre-
dicting an example to be in class i when it is actually
in class j [9,34].

A classification scheme, when applied to some data,
will lead to outcomes that are correct or incorrect, re-
sulting in what is known as a confusion matrix. For
example, suppose we have two different classifiers,
C1 and C2, induced by two different learning algo-
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Table 2a
Outcomes of decision tree classifier (J48) on Hepatitis test set

Predicting class Actual class
Actual die Actual live

Predicting die 4 7
Predicting live 5 25

Table 2b
Outcomes of Bayesian network classifier on Hepatitis test set

Predicting class Actual class
Actual die Actual live

Predicting die 8 2
Predicting live 1 30

rithms; say a Decision tree classifier and a Bayesian
network classifier. Applying these classifiers to a Hep-
atitis dataset and evaluating the supplied test set in the
model may give the results in Tables 2(a) and 2(b) re-
spectively.

Given the outcomes in Tables 2(a) and 2(b), we can
compute the accuracy and misclassification costs of the
two classifiers by using the following measures:

Accuracy =
No. of correct examples

Total number of examples
(1)

Cost =

N∑
j=0

No Missclassifiedj ∗ Costj (2)

Where N is the number of classes, No Misclassifiedj

is the number of class j examples that are misclassi-
fied, and Costj is the cost of misclassifying examples
of class j. Using these equations, we obtain the follow-
ing accuracies and costs for the decision tree (DT) and
the Bayesian network (BN):

DT Accuracy = 70.73%
DT Misclassification cost = 257
BN Accuracy = 92.68%
BN Misclassification cost = 52

Thus, in this example, applying the Bayesian net-
work classifier will entail less cost than applying the
Decision tree classifier on the Hepatitis dataset. The
task of cost-sensitive learning is to induce classifiers
that minimize cost. Most of the work on inducing clas-
sifiers has focused on decision tree learning and, to the
best knowledge of the authors, there has been no at-
tempt to assess whether the use of Bayesian networks
can produce better cost-sensitive classifiers than deci-
sion tree induction. Hence, this study aims to explore
the use of Bayesian networks (BNs) for cost-sensitive
classification.

The study builds upon a paper presented at the First
International Conference on Soft Computing and Data
Mining (SCDM-2014) in which the authors presented
the initial results from using a sampling method [21].
In this paper, the authors present a new direct approach
to learn cost-sensitive Bayesian networks, and present
new results in comparison to the use of sampling.

This paper is organized as follows. Section 2 pres-
ents some background on Bayesian networks. Sec-
tion 3 provides a number of definitions and a sum-
mary of related work and background information on
cost-sensitive learning algorithms. Section 4 presents
two alternative approaches for learning cost-sensitive
Bayesian networks: one by using a direct approach that
amends an algorithm and a second that uses an indirect
approach that uses sampling to amend the distribution
of the training data to reflect costs of misclassification
as previously presented in [21]. Section 5 shows the re-
sults obtained by carrying out an empirical evaluation
on data from the UCI repository [3]. Finally, Section 6
provides a conclusion and summary of the main con-
tribution of this paper.

2. Background on Bayesian networks

A Bayesian network (BN) can be used as a classi-
fier by computing the posteriori probability of a set of
labels given the observable features [24]. According
to Neapolitan [22] there are two aspects to construct-
ing a BN: (i) learn the graphical structure (topology),
that is the relationships between the variables; and (ii)
learn the parameters (conditional probability estima-
tion) which quantify the extent of the relationships.

Learning Bayesian networks can be super exponen-
tial in the number of nodes and is known to be an
NP-hard problem [6,19], and hence several algorithms
have been developed that reduce the size of the search
space by limiting the type of topology that is learned.
One of the first was due to Chow and Liu [5], who
in 1968, proposed a method for learning a Bayesian
tree (also called a Chow-Liu Tree) based on approxi-
mating the joint distribution of a set of discrete vari-
ables using the products of distributions involving no
more than pairs of variables as shown in Fig. 1(a).
This was extended by Pearl [24], in 1988, to learn
singly-connected graphs; which are Directed Acyclic
Graphs (DAGs) where any two nodes only have at
most one unique path as shown in Fig. 1(c). In con-
trast, in 1992, Langley et al. [15] developed an algo-
rithm for learning a simpler structure known as a Naive



E. Nashnush and S. Vadera / Learning cost-sensitive bayesian networks via direct and indirect methods 19

Bayes structure, where all attributes are represented as
independent nodes that have one parent (class node).
A Naive Bayes classifier, as shown in Fig. 1(b), as-
sumes conditional independence of the features given
the class. Naive Bayes is easy to construct and it has
been used as a classifier for many years, especially
where the features are not strongly correlated. More re-
cently, in 1997, Friedman et al. [11] developed a nat-
ural extension to the Naive Bayes classifier and the
Chow-Liu algorithm, where they introduce the Tree
Augmented Naive Bayes (TAN) structure. In contrast to
Naive Bayes, where the assumption is that all attributes
are independent, in a TAN all attributes are condition-
ally independent given the value of the class. Thus in
a TAN, the correlations between attributes can be cap-
tured by adding additional edges between attributes, as
shown in Fig. 1(d).

Learning network structure requires searching for
the best network according to a score. Many scor-
ing criteria have been proposed such as: the Bayesian
Dirichlet scoring function (BD) [14], the Bayesian In-
formation Criterion (BIC) [29], the Minimum Descrip-
tion Length (MDL) [27], and the Akaike’s Information
Criterion (AIC) [2]. All these measures have different
characteristics and the reader can refer to [12] for de-
tails. The MDL measure is used in the algorithm we
adapt and is described below.

Let us assume that B = <G, O> is a Bayesian net-
work, where G is an acyclic graph and O denotes the
parameters consisting of the conditional probabilities.

Let D be a training set, then the MDL score can be
defined by [11,22]:

MDL(B|D) = 1/2logN ∗ |B| − LL(B|D) (3)

There are two parts to this definition. The first part, 1/2

log N * |B| denotes the number of bits required to rep-
resent the network, where N is the number of instances;
|B| is the number of parameters in the network; and 1/2

log N represents the number of bits that are used for
each parameter. The second part, LL(B|D), represents
the log likelihood of B given D, and denotes how many
bits are needed to describe the data D based on the
probability distribution PB and is given by [11,19,22]:

LL(B|D) =

N∑
i=1

PB(ui) ∗ log(PB(ui)) (4)

In particular, the highest log likelihood refers to the
closest model B with the probability distribution of
the data D. The MDL score focuses on combining the
length of the network description and encoding the
data to be minimized.

X3 X4X1 X2

Class

X2

X4

X1

Class

X3

X2 XnX1

Class

…

X3

X4

X1

X2

(d) Tree Augmented Naïve-Bayes [11]

(a) Chow-Liu tree [5]

(b) Naive Bayes [15]

(c) General Bayesian network [24]

Fig. 1. Bayesian structures.

3. An overview of approaches to cost-sensitive
learning

As illustrated by the example in Section 1, the aim of
a cost-sensitive classifier is to minimize the expected
cost of classification [9].

Several authors have categorized cost-sensitive in-
duction algorithms. According to Zadrozny et al. [34],
cost-sensitive classifiers can be divided into two cat-
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egories: Black Box and Transparent Box. Black box
methods use a closed box without changing the clas-
sifier behavior and can work for any classifier. On the
other hand, transparent box methods require knowl-
edge of the particular learning algorithm and are based
on changing the algorithm to include costs. Ling and
Sheng [16] use different terms such as direct method,
and indirect methods.

A direct method, introduces misclassification costs
into algorithms such as cost sensitive decision trees [4,
8,17,23]. On the other hand, indirect methods use tech-
niques such as Sampling [31,34], Relabelling [7,33],
Weighting [32], and Thresholding [9,30]. These meth-
ods can be applied before or after applying an exist-
ing accuracy based classifier. The following sections
describe the application of direct and indirect meth-
ods to produce cost-sensitive decision tree learning al-
gorithms. There are numerous methods that could be
described and we focus on just a couple to illustrate
the main ideas that we use later in Sections 4 and
5. Readers interested in other methods are referred
to a comprehensive survey carried out by Lomax and
Vadera [18].

3.1. Cost-sensitive direct learning methods

A key step in decision tree learning is to select the
criteria used for the next node of the decision tree and
to split the data. Early decision tree induction algo-
rithms that focused on accuracy used a measure based
on information theory to select the splitting criteria.
For example, ID3, and C4.5 [26] are based on calculat-
ing the gain in information achieved by each of the at-
tributes if these were chosen for the split and choosing
the attribute which maximizes this gain:

InfoA = E(D) − E(A) (5)

Where:

E(D) =
∑
c∈C

−Nc

N
∗ log2

Nc

N

E(A) =
∑
a∈A

P (a) ∗
∑
c∈C

−P (a|c) ∗ log2 P (a|c)

Where, a ∈ A are the values of attribute A, and c ∈
C are the class values.

Thus, an obvious way of adapting these algorithms
is to amend this measure to take account of costs. For
example, Breiman et al. [4] modify the class probabil-
ities that are used in the information gain measure, and
exchange that probability with the altered probability

as shown in Eq. (6), where the probability for a class
i is weighted by the relative cost of misclassifying an
example of class i (Cost ratioi).

Altered Probability i = Cost ratioi ∗
(

Ni

N

)
(6)

Where, for k classes:

Cost ratioi =
cost i

Σk
j cost j

For example, for the cost matrix in Table 1, the cost
ratio for the positive class is 50/51, while, the cost ratio
for the negative class is 1/51. Also, Ni is the number
of examples in class i, while N is the total number of
examples.

3.2. Cost-sensitive indirect learning method

Indirect methods do not change the learning process
of a classifier and instead use it as a black box. As
an example, consider one the earliest indirect methods,
called MetaCost [7]. In this method, an accuracy based
learner is used on several samples of the data, each re-
sulting in a decision tree. The resulting trees are used
to predict the class of each example, and then used to
predict the class that minimises the cost, which in turn
is used to relabel the examples. The accuracy based
learner is then applied on the relabelled data to pro-
duce a cost-sensitive decision tree. Another interesting
indirect method is Costing [34] which makes use of a
result due to Elkan [9] that states a Folk Theorem that
the data distribution can be changed to reflect the costs.
As Zadrozny et al. [35] state:

“If the new examples are drawn from the old dis-
tribution, then optimal error rate classifiers for the
new distributions are optimal cost minimizers for
data drawn from the original distribution.”

This is presented as the following equation [35]:

D′(x, y, c) =
C

Ex,y,c∼D[c]
D(x, y, c) (7)

Where, the new distribution D′ = factor * Old dis-
tribution D; x is instance; y is the class label; and C
is the cost according to misclassified instance x. This
theorem can be used to create a new distribution from
the old distribution by multiplying the old distribution
with a factor proportional to the relative cost of each
example.

For example, consider the hepatitis dataset,which
has 32 instances in the class “die” (class distribution
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Fig. 2. Changing the data distribution of hepatitis dataset.

0%), and 123 instances in the class “live” (class dis-
tribution 80%). Given the imbalance in examples for
the two classes, an accuracy based classifier will al-
ways be biased to the most common class, that is live,
though misclassifying examples of class “die” is more
serious. The folk theorem can be used to address this
kind of situation. Suppose the misclassification costs
are 4:1 for Live: Die respectively. Then the new distri-
bution of class die = 4*32 = 128 die (class distribution
50%); and the new distribution of class live = 1*123
= 123 live (class distribution 50%), as summarised by
the steps given in Fig. 2.

4. Development of cost-sensitive Bayesian
networks

The direct and indirect methods described above,
have been used mainly when developing cost-sensitive

decision tree learners. Section 4.1 describes the use of
a direct approach for learning cost-sensitive Bayesian
networks and Section 4.2 describes an indirect ap-
proach for learning cost-sensitive Bayesian networks.

4.1. Cost-sensitive Bayesian network induction via a
direct approach

As described in Section 2, a key step of existing al-
gorithms for learning the structure of a Bayesian net-
work is to compute the Minimum Description Length
(MDL). Hence, by analogy with the approach taken for
decision trees, where the information theoretic mea-
sure was modified, the modification made to develop
our new algorithm is to change the original MDL mea-
sure [27], which was described in Section 2 in Eqs (3)
and (4).

As with the modification made for decision trees, we
make two amendments when learning the structure of
a Bayesian network.

First, the Log-likelihood factor that is used in the
MDL measure Eq. (4) is amended to take account of
costs. The modification made is to multiply each part
of the information measurement with the cost propor-
tion of a class, resulting in the new LL(B|D) given in
Eq. (8).

LL(B|D) =

k∑
j=1

N∑
i=1

p(xi, πxi) log2

(8)(
p(xi, πxi)

p(πxi)

)
∗ Cost ratioj

Where, M is the number of class labels, N is the num-
ber of parent attributes to node xi, πxi represents the
parents of the attribute xi and Cost ratioj is the ratio of
the cost of misclassifying class j over the total costs, as
described in Section 3.1. While p(xi, πxi) represents
the probabilities of events in D.

Secondly, the parameters are modified to reflect
costs by modifying the conditional probability of each
node given its parent. That is, instead of using the
Laplace estimator of P (i), we weight it by the cost ra-
tio:

Pclassj
(xi|πxi) = Cost ratioj ∗ p(xi, πxi) + 1

p(πxi) + nxi
(9)

Where, xi is the node that is connected with πxi (class
label, and another parent); nxi is the number of possi-
ble values of node xi.

These amendments lead to the algorithm presented
in Fig. 3, which is an amended version of the algo-
rithm by Friedman et al. [11]. This algorithm was im-
plemented in Java in the WEKA system [33] and an
empirical comparison with existing algorithms is pre-
sented in Section 5.
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Fig. 3. Cost-Sensitive Bayesian Network Algorithm by direct
amendment.

4.2. Cost-sensitive Bayesian networks induction via
an indirect approach

This section presents an indirect approach to de-
velop cost-sensitive Bayesian networks (CS-BNs) that
uses sampling to take account of misclassification
costs. The approach used is based on that introduced
by Zadrozny et al. [35] and Elkan’s Folk Theorem [9]
that was described in Section 3.2. This theorem draws
a new distribution from the old distribution, according
to cost proportions to change the data distribution and
obtain optimal cost-minimization from the original dis-
tribution. Figure 4 gives the algorithm we adopt using
sampling.

The main steps of this algorithm are:
Step 1: The data are split into a training set and test-

ing set. The training set uses 75% of the original data,
while the testing set uses 25% of the original data.1

Step 2: The distribution of the data is altered to take
account of costs. For instance, if the cost of wrongly
classifying a sick patient as healthy is £20 and the cost
of misclassifying a healthy patient as sick is £2, then
the cost ratio of the sick class will be 20/22 = 0.90.

1Other ways of splitting the data could, of course be adopted with-
out affecting the principles of the approach.

CS-BN via Indirect approach (Sampling) 
1. Divide dataset into 75% of instances for 

training, and 25% for testing. With the same 
class distributions. 

2. Change the data distribution according to 
the cost ratio of each class: 

3. Learn the TAN structure and its parameters 
4. Evaluate the TAN on the original test set 

distribution. 

Fig. 4. Cost-sensitive Bayesian network algorithm by indirect ap-
proach using sampling.

The cost ratios are then used to change the data distri-
butions. For example, if a dataset has a class distribu-
tions of 50% for each class, when the costs are 1:4, the
new proportions for each class will be 20% and 80%
respectively. There are different methods that can be
used to sample the data to redistribute the data. During
our research, we used two methods, under-sampling
and over-sampling. Where the new proportion was less
than the original proportion, we used under-sampling
(without replacement) to delete some of the examples
in the frequent class. On the other hand, if the new
proportion was greater than the original proportion, we
used over-sampling (with replacement) to randomly
select new instances which belonged to the rare class,
and hence increase the number of examples.

Step 3: Uses Friedman et al.’s [11] cost-insensitive
algorithm on the new distribution from step 2.

Step 4: Evaluates the model on the original distribu-
tion.

5. Empirical evaluation

This section presents an empirical evaluation of
the amended cost-sensitive BN algorithm, and CS-
BN using a sampling approach. The evaluation is car-
ried out using 33 data sets from the UCI reposi-
tory [3] and adopting the 75% training and 25% test-
ing methodology. The cost matrix adopts 16 cost ratios
[4:1,4:2,4:3,4:4, 3:1,.., 1:4]. The evaluation is carried
out with respect to the two methods presented in this
paper as well as the following algorithms:

(i) The original TAN learning algorithm [11], to as-
sess the extent to which the amendments make
a difference.

(ii) The MetaCost [7] algorithm with J48 as the base
classifier to compare against a cost-sensitive de-
cision tree learner that is known to perform well.
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Table 3 presents the results for each of the 33 data
sets and highlights the result with the lowest cost for
each data set. Figure 5 presents the results of expected
costs for each data set in the form of bar charts, and
Fig. 6 presents the accuracy across different data sets.

These experiments show that:

(i) The numbers of misclassifications of the rare

class (i.e., more expensive) are always less than
the number of misclassifications of the frequent
class in all datasets.

(ii) The use of the direct approach gives good re-
sults on most of types of data, whether numeric,
nominal, balanced, or unbalanced data. The di-
rect approach performed better in terms of min-



24 E. Nashnush and S. Vadera / Learning cost-sensitive bayesian networks via direct and indirect methods

Ta
bl

e
3

C
om

pa
ris

on
be

tw
ee

n
C

S-
B

N
vi

a
di

re
ct

an
d

in
di

re
ct

m
et

ho
ds

D
at

as
et

C
S-

B
N

di
re

ct
ap

pr
oa

ch
C

S-
B

N
In

di
re

ct
ap

pr
oa

ch
M

et
aC

os
t+

J4
8

O
ri

gi
na

lB
N

C
os

t
A

cc
ur

ac
y

C
os

t
A

cc
ur

ac
y

C
os

t
A

cc
ur

ac
y

C
os

t
A

cc
ur

ac
y

A
du

lt
33

44
.2

±
22

.8
1

80
.1

3
±

0.
09

33
75

.0
±

39
.2

6
80

.0
8

±
0.

17
36

51
.5

±
39

.4
8

79
.5

1
±

0.
15

46
40

.1
±

34
.2

5
86

.0
2

±
0.

14
A

us
tr

al
ia

n
C

re
di

t
37

.8
±

1.
31

85
.4

4
±

0.
57

43
.4

±
3.

8
86

.0
4

±
0.

98
46

.5
±

1.
57

84
.2

±
0.

65
65

.9
±

3.
45

86
.0

4
±

0.
68

B
an

k
49

.6
±

2.
92

84
.1

2
±

0.
96

78
.2

±
2.

98
54

.0
5

±
1.

61
80

.8
±

2.
13

53
.7

2
±

1.
45

99
.8

±
5.

05
75

.5
4

±
1.

34
B

re
as

tC
an

ce
r

48
.5

±
3.

0
59

.0
±

0.
93

49
.6

±
2.

93
54

.4
3

±
1.

01
50

.6
±

2.
5

44
.0

±
1.

41
61

.2
±

3.
37

69
.5

7
±

1.
68

B
up

a
liv

er
di

so
rd

er
50

.0
±

0.
0

41
.8

6
±

0.
0

50
.1

±
0.

1
42

.4
4

±
0.

4
50

.0
±

0.
0

41
.8

6
±

0.
0

13
8.

0
±

6.
0

58
.1

4
±

0.
0

C
ar

s
0.

0
±

0.
0

10
0.

0
±

0.
0

0.
0

±
0.

0
10

0.
0

±
0.

0
1.

4
±

0.
65

99
.4

3
±

0.
26

0.
4

±
0.

4
99

.8
9

±
0.

11
C

le
ve

la
nd

di
se

as
e

22
.7

±
2.

01
83

.3
3

±
1.

15
23

.0
±

2.
06

82
.9

3
±

1.
25

23
.0

±
2.

06
82

.9
3

±
1.

25
30

.2
±

3.
16

85
.7

3
±

1.
23

C
rx

45
.0

±
4.

67
83

.4
9

±
1.

19
51

.9
±

2.
59

83
.3

1
±

0.
63

52
.6

±
2.

07
82

.9
±

0.
5

66
.0

±
3.

07
86

.1
5

±
0.

55
C

yl
in

de
r

B
an

d
83

.6
±

1.
85

70
.7

5
±

0.
79

85
.0

±
3.

81
69

.2
5

±
0.

87
83

.9
±

3.
14

74
.1

±
0.

82
90

.8
±

5.
65

77
.0

1
±

0.
89

D
ia

be
te

s
89

.8
±

4.
26

66
.0

2
±

0.
8

86
.8

±
2.

65
61

.1
5

±
1.

14
95

.0
±

3.
52

67
.0

7
±

1.
06

12
2.

7
±

3.
68

75
.3

4
±

0.
59

G
er

m
an

cr
ed

it
12

2.
7

±
6.

32
68

.3
2

±
1.

08
12

7.
1

±
6.

37
67

.5
2

±
0.

97
12

5.
9

±
4.

9
67

.7
6

±
1.

25
18

4.
2

±
5.

44
74

.4
4

±
0.

65
G

ym
ex

am
g

43
8.

0
±

0.
0

29
.3

5
±

0.
0

43
8.

0
±

0.
0

29
.3

5
±

0.
0

43
8.

0
±

0.
0

29
.3

5
±

0.
0

72
8.

0
±

0.
0

60
.6

5
±

0.
0

H
ab

er
m

an
56

±
3.

2
56

.4
±

1.
77

54
.9

±
1.

72
34

.0
±

2.
12

58
.1

±
2.

21
56

.1
3

±
1.

63
68

.8
±

1.
08

71
.4

7
±

0.
8

H
ep

at
ie

s
13

.4
±

2.
06

81
.7

9
±

2.
04

13
.9

±
1.

39
77

.4
4

±
2.

25
15

.0
±

1.
91

81
.5

4
±

2.
22

13
.8

±
2.

12
83

.8
5

±
1.

62
H

or
se

C
ol

ic
43

.0
±

2.
86

80
.3

3
±

1.
23

43
.4

±
2.

56
72

.7
2

±
1.

13
47

.3
±

2.
68

74
.6

7
±

1.
34

46
.2

±
2.

61
80

.7
6

±
1.

32
H

or
se

43
.8

±
2.

67
72

.6
4

±
1.

59
43

.4
±

4.
51

72
.0

9
±

1.
56

44
.4

±
3.

82
71

.3
2

±
1.

16
44

.9
±

3.
44

77
.0

3
±

1.
45

H
yp

o
22

.5
±

2.
4

98
.0

8
±

0.
23

16
.7

±
2.

7
98

.9
8

±
0.

18
26

.7
±

3.
51

97
.7

±
0.

22
25

.2
±

2.
99

98
.6

6
±

0.
13

Io
no

Sp
he

re
21

.3
±

3.
13

91
.7

2
±

0.
89

21
.3

±
3.

13
91

.7
2

±
0.

89
26

.2
±

2.
35

89
.5

4
±

0.
53

28
.0

±
2.

76
87

.4
7

±
0.

95
L

ab
or

3.
0

±
1.

06
87

.1
4

±
2.

33
3.

0
±

1.
06

87
.1

4
±

2.
33

3.
7

±
0.

96
84

.2
9

±
2.

56
3.

3
±

1.
19

91
.4

3
±

2.
33

M
us

hr
oo

m
0.

0
±

0.
0

10
0.

0
±

0.
0

0.
0

±
0.

0
10

0.
0

±
0.

0
2.

4
±

0.
88

99
.9

7
±

0.
01

2.
0

±
0.

67
99

.9
8

±
0.

01
M

us
k

21
.5

±
2.

7
92

.3
9

±
0.

77
19

.7
±

8.
31

93
.4

2
±

2.
35

28
.1

±
2.

94
86

.5
±

1.
09

17
.3

±
1.

94
93

.9
3

±
0.

63
Pi

m
a

di
ab

et
es

84
.9

±
3.

24
69

.0
6

±
1.

2
89

.4
±

2.
2

59
.6

3
±

1.
16

89
.9

±
3.

55
64

.5
5

±
1.

03
12

3.
6

±
4.

09
75

.3
4

±
1.

1
Si

ck
40

.2
±

1.
7

96
.8

6
±

0.
14

34
.3

±
2.

08
97

.4
±

0.
16

40
.7

±
2.

79
97

.0
4

±
0.

14
43

.5
±

2.
66

97
.3

3
±

0.
12

So
na

r
22

.9
±

2.
28

71
.5

4
±

1.
51

28
.0

±
2.

13
66

.3
5

±
1.

29
28

.9
±

3.
03

77
.3

1
±

2.
25

28
.9

±
3.

03
77

.3
1

±
2.

25
Sp

am
ba

se
19

0.
0

±
4.

91
92

.9
6

±
0.

18
17

7.
7

±
8.

14
92

.3
5

±
0.

26
24

4.
3

±
6.

53
91

.8
7

±
0.

17
23

4.
5

±
9.

05
92

.7
7

±
0.

18
SP

E
C

T
H

ea
rt

40
.3

±
2.

26
63

.4
8

±
1.

47
38

.8
±

2.
46

63
.0

3
±

1.
58

43
.1

±
1.

63
65

.1
5

±
1.

69
51

.4
±

1.
19

70
.3

±
0.

79
St

at
lo

g
H

ea
rt

23
.5

±
2.

25
81

.6
7

±
1.

38
20

.6
±

1.
42

78
.3

3
±

0.
72

25
.1

±
2.

25
79

.2
4

±
1.

11
33

.1
±

3.
12

82
.1

2
±

1.
29

Su
pe

rm
ar

ke
t

72
7.

0
±

0.
0

36
.4

5
±

0.
0

72
7.

0
±

0.
0

36
.4

5
±

0.
0

72
7.

0
±

0.
0

36
.4

5
±

0.
0

16
68

.0
±

0.
0

63
.5

5
±

0.
0

Ti
c-

Ta
c-

To
e

10
5.

1
±

3.
26

65
.1

3
±

1.
0

10
7.

9
±

4.
52

65
.4

7
±

1.
1

12
2.

5
±

3.
54

58
.1

4
±

0.
96

16
2.

7
±

5.
04

77
.2

±
0.

52
U

nb
al

an
ce

d
8.

0
±

0.
0

99
.0

5
±

0.
0

7.
9

±
0.

35
98

.9
5

±
0.

06
8.

2
±

0.
47

98
.8

1
±

0.
15

8.
0

±
0.

0
99

.0
5

±
0.

0
Vo

te
12

.7
±

1.
38

94
.3

±
0.

51
13

.7
±

1.
27

93
.9

3
±

0.
56

15
.6

±
1.

67
92

.1
5

±
0.

59
15

.4
±

1.
67

94
.3

±
0.

45
W

ea
th

er
2.

4
±

0.
64

40
.0

±
9.

69
2.

5
±

0.
64

56
.6

7
±

7.
11

4.
2

±
0.

57
40

.0
±

8.
31

4.
1

±
0.

57
43

.3
3

±
8.

68
W

is
co

ns
in

C
an

ce
r

7.
0

±
0.

8
96

.8
±

0.
35

5.
8

±
0.

88
96

.8
±

0.
4-

7
7.

8
±

0.
89

96
.6

9
±

0.
25

9.
9

±
1.

08
96

.5
1

±
0.

31



E. Nashnush and S. Vadera / Learning cost-sensitive bayesian networks via direct and indirect methods 25

imizing costs than the indirect approach in 19
out of the 33 data sets evaluated

(iii) The use of the indirect approach, involving
changing the data distributions yields good re-
sults on most data; especially if the data are not
very highly skewed towards one class.

(iv) The indirect approach performed better in terms
of minimizing costs than the direct approach in
14 out of the 33 data sets evaluated.

(v) Overall, both the direct and indirect versions
outperform MetaCost+J48, and the original ac-
curacy only version in terms of minimizing cost.
Both approaches performed better in terms of
minimizing costs than MetaCost+J48, and orig-
inal BN algorithm in 27 out of the 33 data sets
evaluated.

(vi) The accuracy of the cost-sensitive version is
similar but slightly less than the original accu-
racy based version of TAN, though the level of
sacrifice is not as significant as reported in stud-
ies that use similar approaches for learning cost-
sensitive decision trees [18].

6. Conclusion

Cost-sensitive learning algorithms have received in-
creasing attention in most real world applications,
though most of the existing studies are devoted to mak-
ing decision trees cost-sensitive. Existing Bayesian
network algorithms that are designed to minimize
misclassification errors do not take misclassification
costs into consideration. Hence, this study has ex-
plored whether it is possible to develop cost-sensitive
Bayesian networks. Two algorithms were developed by
analogy with the strategies used for producing cost-
sensitive decision trees: (i) a direct approach that in-
volved amending the MDL measure used in construct-
ing a network and (ii) an indirect approach, based on
sampling to change the distribution of examples to re-
flect the costs of misclassification.

The main findings from the empirical evaluation rel-
ative to other algorithms are:

– As one would expect, the new algorithms outper-
formed the cost-insensitive version of the algo-
rithm that learns Bayesian networks.

– The direct approach gives good results on most of
the data sets and is also better than the indirect ap-
proach on some data sets, while, the indirect ap-
proach works very well when the data are not very
highly skewed towards one class.

– In our evaluations, both the direct and indirect ap-
proaches performed better than MetaCost+J48 in
terms of minimizing costs.

In conclusion, application of strategies to induce
cost-sensitive decision trees to learn cost-sensitive
Bayesian networks have proved to be effective and, in
general, lead to more cost-effective classification than
the use of decision trees.
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