Temperate phages both mediate and drive adaptive evolution in pathogen biofilms

Davies, E, James, C, Williams, D, O'Brien, S, Fothergill, J, Haldenby, S, Paterson, S, Winstanley, C and Brockhurst, M

http://dx.doi.org/10.1073/pnas.1520056113
Temperate phages both mediate and drive adaptive evolution in pathogen biofilms

Emily Davies1,2,5, Chloe James1,3,6, David Williams1,2,5, Siobhan O’Brien4, Joanne Fothergill1, Sam Haldenby2, Steve Paterson2, Craig Winstanley1,6, Michael A. Brockhurst1,6,*

1. Institute of Infection and Global Health, University of Liverpool, Liverpool, UK 2. Institute of Integrative Biology, University of Liverpool, Liverpool, UK 3. School of Environment and Life Sciences, University of Salford, Manchester, UK 4. Department of Biology, University of York, York, UK 5 Joint first authors 6 Equal contribution * Corresponding author

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Temperate phages drive genomic diversification in bacterial pathogens. Phage-derived sequences are more common in pathogenic than non-pathogenic taxa, and are associated with changes in pathogen virulence. High abundance and mobilisation of temperate phages within hosts suggests that temperate phages could promote within-host evolution of bacterial pathogens. However, their role in pathogen evolution has not been experimentally tested. We experimentally evolved replicate populations of Pseudomonas aeruginosa with or without a community of three temperate phages active in cystic fibrosis (CF) lung infections, including the transposable phage, φ4, which is closely related to phage D3112. Populations grew as free-floating biofilms in artificial sputum medium, mimicking sputum of CF lungs where P. aeruginosa is an important pathogen and undergoes evolutionary adaptation and diversification during chronic infection. While bacterial populations adapted to the biofilm environment in both treatments, population genomic analysis revealed that phages altered both the trajectory and mode of evolution. Populations evolving with phages exhibited a greater degree of parallel evolution and faster selective sweeps than populations without phages. Phage φ4, integrated randomly into the bacterial chromosome but integrations into motility-associated genes and regulators of quorum sensing systems essential for virulence were selected in parallel, strongly suggesting that these insertional inactivation mutations were adaptive. Temperate phages, and in particular transposable phages, are therefore likely to facilitate adaptive evolution of bacterial pathogens within hosts.

Pseudomonas aeruginosa | cystic fibrosis | mobile genetic element | experimental evolution | bacteriophage

INTRODUCTION

Comparative genomics suggests that temperate phages play an important role in the evolution and genomic diversification of bacterial pathogens (1). Bacterial genomes often contain a range of intact and remnant prophage elements (1-3) and ecologically important bacterial traits are believed to be phage-derived (e.g. phage-derived bacteriocins (4)). Phage-related sequences are observed more frequently in pathogenic than nonpathogenic strains (5), and prophage acquisition can be associated with changes in pathogen virulence (6, 7). Prophages can directly contribute accessory gene functions (1, 8), or disrupt bacterial genes by insertional inactivation. Of particular note are the transposable class of temperate phage (also known as mutator phage), including D3112 of P. aeruginosa (9, 10), which integrate throughout the chromosome disrupting existing genes and increasing the supply of mutations available to selection. Recent reports of high rates of phage mobilization within hosts (11) and high temperate phage abundance in humans (12), including at sites of chronic infection where phage particles have been observed to exceed bacterial host densities by 10-to-100-fold (13), suggests that temperate phages could play an important role in driving within-host evolution of bacterial pathogens. However, experimental tests of the hypothesis that temperate phages contribute to rapid evolutionary adaptation of pathogenic bacteria are lacking.

Pseudomonas aeruginosa is an important opportunistic pathogen and the major cause of chronic lung infection leading to morbidity and mortality in Cystic Fibrosis (CF) patients (14). Populations of P. aeruginosa in the CF lung grow as microcolony biofilms suspended within lung sputum and undergo extensive genetic diversification (15-17) and rapid evolutionary adaptation (18, 19) to this host environment. Characteristic bacterial adaptations to life in the CF lung and the transition to chronicity include the evolution of mucoidy, altered metabolism, loss of motility, quorum sensing defects, and resistance to antibiotics (18, 20). Despite detailed knowledge of the targets of selection, we still have only a very limited understanding of the causes of selection driving the evolution of these phenotypes. Phages are known to be present in the CF lung, have been cultured from lung sputa (21, 22) and detected at high abundance using culture independent molecular approaches (13). Moreover, prophages are a common feature of P. aeruginosa sequenced genomes (23), and lysogenic conversion has been linked to the evolution of key clinical phenotypes (e.g., mucoidy (24, 25)). Therefore it is likely that temperate phages may both impose selection on P. aeruginosa in the CF lung, and contribute to pathogen adaptation to this host environment.

We used experimental evolution to directly test how temperate phages affect P. aeruginosa adaptation in artificial sputum treatments, population genomic analysis revealed that phages altered both the trajectory and mode of evolution. Populations evolving with phages exhibited a greater degree of parallel evolution and faster selective sweeps than populations without phages. Phage φ4, integrated randomly into the bacterial chromosome but integrations into motility-associated genes and regulators of quorum sensing systems essential for virulence were selected in parallel, strongly suggesting that these insertional inactivation mutations were adaptive. Temperate phages, and in particular transposable phages, are therefore likely to facilitate adaptive evolution of bacterial pathogens within hosts.

Significance

During chronic infection bacterial pathogens undergo rapid evolutionary adaptation and extensive genetic diversification affecting patient symptoms and treatment outcomes. Temperate phages are common in pathogen genomes and phage particles can reach high abundance in human infections, but their role in pathogen evolution is unclear. Using experimental evolution and population genomics we show that temperate phages found in human infections accelerated pathogen evolution by increasing the supply of beneficial mutations and imposing strong selection on bacterial populations. Notably phages accelerated the loss of clinically important virulence-related bacterial traits, including mucoidy and quorum sensing. Temperate phages are likely therefore to facilitate rapid evolution of bacterial pathogens and contribute to their adaptation to the host environment and clinical treatments.

Reserved for Publication Footnotes
To determine the fitness response to selection we competed each evolved population against the ancestral PAO1 in ASM, and because lysogens may have higher fitness simply due to phage-mediated killing of susceptible competitors (29, 31), we also performed competitions against a phage-resistant PAO1ΔpilA (all of the temperate phages used here infect via the type IV pilus (32)). We observed that evolved populations from both treatments were fitter relative both to PAO1 and PAO1ΔpilA (Fig 1; one-sample t-test (a=0), all significant at an alpha-level of 0.0125). Populations evolved with phages had higher fitness than populations evolved without phages relative to PAO1, but this fitness advantage of evolving with phages was lost when competing against PAO1ΔpilA (Fig 1; treatment × competitor interaction: \(F_{2,30} = 8.54, \text{MSE} = 0.59, p < 0.01\); simple effect of treatment against competitor PAO1: \(F_{1,10} = 7.12, \text{MSE} = 0.71, p < 0.025\); simple effect of treatment against competitor PAO1ΔpilA: \(F_{1,10} = 1.53, \text{MSE} = 0.06, p = 0.24\)). Together these data confirm that populations in both treatments adapted to the sputum-like environment and that lysogenised hosts had enhanced competitiveness against phage-susceptible competitors.

To determine the genetic basis of the observed evolutionary adaptation we performed whole genome sequencing on population samples containing the last generation population from the end of the experiment. All populations contained single nucleotide polymorphisms (SNPs) and small insertions or deletions (indels), and all replicate populations that had evolved with phages contained integrated prophages. At the genome-wide scale, populations evolved with or without phages did not differ in abundance or frequency of SNPs and indels (excluding insertions caused by prophage integrations) and both groups had high variance of polymorphic sites; between 16 and 173 among the phage-free populations and 17 to 176 among the phage-containing populations (Table S1).

Parallel evolution at a particular locus, where independent mutations are observed more often than expected by chance, is strong evidence for positive selection. For example, in the absence of selection, the probability of observing a mutation in two populations at the conclusion of the experiment is only \(p = 0.003\), and \(p = 0.0002\) if observed in three populations (for an average 1004 bp sized protein coding sequence in the PAO1 genome). Thus to identify loci likely to have been under selection during experimental evolution we concentrated our analyses on the subset of genes that had been targeted by mutations in \(\geq 2\) replicate populations per treatment (Fig 2, Tables S2 and S3). A greater degree of parallel evolution was observed in the presence of phages (measured as the probability of randomly drawing a pair of mutated genes from different populations, with phages \(0.056 \pm 0.016 \text{s.e.}, \) without phages \(0.024 \pm 0.007 \text{s.e.}, p < 0.05\) by Bootstrap Test). Some parallel targets of selection were shared among treatments, including genes involved in the type IV pilus regulon, motility, flagellar motility, biofilm formation, metabolism and regulation, suggesting that these mutations were beneficial in the sputum-like environment per se. Interestingly, some loci were more likely to evolve in the presence of phages. In particular, mutations affecting the quorum sensing (QS) regulators lasR and mvrR were each observed in 5/6 replicate phage-treated populations, compared to only 1/6 replicate phage-free populations. In addition, 3/6 populations evolving with phages versus 1/6 evolving without phages contained mutations in fha1, which encodes an FHA domain protein that post-translationally activates type VI secretion (33). A further indication of stronger selection due to phages is that parallel selected loci displayed higher allele frequencies in the phage treatment (mean allele frequency = 34.33 ± 3.2 s.e.m / 40) compared to the control treatment (mean allele frequency = 22.67 ± 3 s.e.m / 40), suggesting that selective sweeps in the phage treatment were closer to fixation (discussed in more detail in Supplementary Materials).

RESULTS AND DISCUSSION

In the experimental populations, phages had no effect on bacterial densities (Fig S1a) despite evidence of on-going phage lysis in all replicate populations of the phage treatment (Fig S1b). At the end of the experiment, free virions of all phages were detected in 4/6 populations, whereas in the other 2 populations only \(\phi 3\) and \(\phi 4\) virions were detected (Fig S1c). We observed high rates of lysogeny (i.e., integration of prophage(s) into the bacterial chromosome) in 5/6 populations but the phages differed in their propensity to form lysogens: lysogens of the transposable phage \(\phi 4\) approached fixation in 5/6 populations, whereas lysogenisation of bacteria by the other phages was less common, and, where observed, was typically as a polylysogen in combination with \(\phi 4\) (Fig S2). Thus lysogeny, and indeed polylysogeny, was rapidly established in our experimental populations, and moreover lysogeny appears to have been essential for the long-term maintenance of phages in populations.
A key difference between the populations evolving with vs. without phages is that a substantial fraction of ORFs under positive selection (8 of 26; figure 2) contained mutations caused by prophage integration in the phage-containing treatment. Prophage 2 and 3 were found exclusively at the intergenic regions (Fig 2; Tables S5 and S8). The functions most commonly disrupted by positively selected mutations (Fig 3c) were likely to be homologous. Variants are also listed in Table S8.

Because all of the temperate phages used here infect via the type IV pilus (32) and PAO1ΔpilA4 mutants showed higher fitness compared to PAO1 against lysogenized bacteria evolved in the phage treatment (Fig 1), we hypothesised that disruption of type IV pilus motility associated genes may have been selected to prevent superinfection and lysis of φ4 lysogens. Notably, while φ4 lysogens have strong superinfection immunity against φ4, they remain susceptible to infection and subsequent lysis by φ2 and φ3 (32), suggesting that loss of type IV pilus function was more strongly selected in the presence of a diverse phage community. In support of this we observed higher rates of phage resistance in populations that evolved with versus without phages (Fig 3a; Mann–Whitney test; W = 24.0, n1 = n2 = 6, p = 0.02). Correspondingly, type IV pilus-dependent twitching motility was lost more rapidly in phage-containing populations than in phage-free populations, suggesting the loss of type IV pilus function was more strongly selected in the presence of phages (Fig 3b). To determine whether loss of type IV pilus twitching motility phenotype was associated with φ4 integration, we tracked allele frequency dynamics in 2 replicate populations. Specific PCR primer sets (Table S6) were used to detect integrated φ4 prophage in fimU and pilV. In both cases there was a positive association between the allele frequency dynamics and the rise in frequency of twitching motility deficient mutants (Fig 3c). We next contrasted the allele frequencies of SNPs, indels and φ4 prophage-integration mutations occurring at type IV pilus-associated loci. Across 6 phage-treated populations, 12 mutations of the type-IV pilus associated genes were detected in parallel, the majority (n = 9) were caused by φ4 prophage-integration mutations selected in parallel.
Our genomic data suggest that temperate phages promoted the loss of QS with positive selection of \(\Phi 4 \) prophage integrations, SNPs and indel mutations at the \(mvfR \) and \(lasR \) loci. Mutations to \(lasR \) lead to disruption of the acyl-homoserine-lactone (AHL) signaling system (37), whereas mutations to \(mvfR \) lead to disruption of the Pseudomonas Quinolone Signal (PQS) system (38), suggesting large-scale alterations to QS cell-cell signaling in populations evolving with phages. To test whether QS deficient bacteria have higher fitness in the presence of phages, we competed \(PA01 \) against \(PA01\Delta lasR \) in ASM with and without the temperate phages. There was no effect of phages on the fitness of \(PA01\Delta lasR \) (Fig. S3; two-sample t-test, \(t = 0.44 \), which was substantially fitter relative to \(PA01 \) in both the presence (one-sample t-test (alt=0), \(t = 5.0331, p < 0.01 \)) and absence (one sample t-test (alt=0), \(t = 6.7085, p = 0.001 \)) of phages. These data suggest that \(lasR \) mutations are beneficial in ASM per se. This is consistent with the observation that single populations in the phage-free treatment also acquired mutations in QS genes, but that the rate of evolution at these loci was higher in the presence of phages. Secondly, we compared the rates of spontaneous phage lysis of \(\Phi 4 \) lysogens constructed in both the \(PA01 \) and \(PA01\Delta lasR \) backgrounds: There was no significant difference in production of free phages in stationary phase cultures (median free phage density: \(PA01, 3.4 \times 10^{10} \) p.f.u. per ml, \(PA01\Delta lasR, 3.3 \times 10^{10} \) p.f.u. per ml; Mann-Whitney test; \(W = 92.0, P = 0.345 \)). Thus although direct interaction between temperate phages and bacterial QS has been reported in other systems, via QS induced lysis by phages (39) or QS mediated alteration of phage receptor expression by bacteria (40), this does not appear to be an important factor in our study. Phages may have simply increased the supply of large effect mutations available to natural selection, notably via \(\Phi 4 \) prophage integrations into \(mvfR \) (Fig. 2). Alternatively, there may have been epistatic interactions between the fitness effects of QS mutations and other positively selected mutations, which strengthened selection for loss of QS in the presence of phages. Mutations in QS regulators are commonly observed to accumulate over time in CF chronic infection (41). Both AHL and PQS signaling are required for full virulence in \(P. aeruginosa \) (42) suggesting that temperate phage selection may accelerate the loss of virulence in chronic infections.

In summary, we have shown that temperate phages enhanced parallel evolution in \(P. aeruginosa \) biofilms in a sputum-like environment. Our data suggest two ways in which this may have occurred: Firstly, the transposable phage \(\Phi 4 \) mediated adaptive evolution by increasing the supply of positively selected mutations via insertional inactivation of genes caused by prophage integrations, particularly in type-IV pilus and QS associated genes. Secondly, we present evidence that temperate phage strengthened selection, particularly for mutations in type IV pilus associated genes, accelerating the evolutionary loss of type IV dependent pilus motility presumably to avoid super-infection and subsequent lysis by phages which infect via the type IV pilus. A recent transcripton sequencing study of \(P. aeruginosa \) PA14 shows that mutations
in type IV pilus associated genes increase fitness in the murine lung (43). Moreover, loss of both motility (44, 45) and QS (46, 47) functions are known to frequently evolve in *P. aeruginosa* chronic infections of the CF lung. Temperate phages, including those used here, can be present at very high densities in the CF lung (exceeding bacterial densities by orders of magnitude (13)), which taken together with our findings suggests that temperate phages could play an important role in CF lung infections by driving the evolution of these clinically important traits in *P. aeruginosa*. In addition, our data suggest that living in a sputum-like environment per se selects for mutations in genes associated with motility, biofilm formation, metabolism and regulation. Similar mutations observed in CF lung isolated *P. aeruginosa* are therefore likely to be at least partially explained simply as adaptations to selection imposed by the sputum environment, but could have implications for susceptibility to antibiotics (48) or host immune responses (49) as correlated responses (50). Experimental evolution in clinically relevant infection models has the potential to enhance our understanding of the causal links between sources of selection and the evolutionary responses of pathogens in infections (51), advancing our understanding of within host pathogen evolution and our ability to direct this for improved patient health.

METHODS SUMMARY

Twelve replicate microcosms (30 ml glass universals containing 5 ml ASM) were inoculated with 5 x 10^7 cells *P. aeruginosa* strain PAO1 and grown as a biofilm (37 °C incubation with shaking at 60 r.p.m.). LES phages ϕ2, 3 and 4 were added to six microcosms after 24 hours of growth to a total multiplicity of infection of 0.1 (phage treatment), and the remaining six were designated phage-free controls. Phages were added only once, at the beginning of the experiment. After a further 72 hours growth, biofilms were homogenized with an equal volume of Sputasol and the homogenate transferred (1:100) into fresh ASM. Transfers were repeated every 4 days, to a total of 30 transfers (approximately 240 bacterial generations). Every other transfer, bacterial and total free phage densities were enumerated, and every 5 transfers, the frequency of prophage carriage in the phage treatment was estimated using a multiplex PCR assay using primers targeted to each of the LES phages. At transfers 5, 15 and 30, 40 isolates per population were screened for the type IV pilus-mediated twitching motility phenotype using the agar stab method.

At the end of the experiment, DNA was extracted from 40 isolates per population and pooled, and the pooled DNA sequenced on an Illumina HiSeq 2000. European Nucleotide Archive accession number for the project is PRJEB9801. Polymorphisms were called from reads aligned to the published PAO1 genome treating each sample as having ploidy = 40, reflecting the number of pooled isolates. ϕ4 prophage insertion sites were estimated from the mapping locations of reads that mapped to the PAO1 chromosome and whose mate read mapped to the ϕ4 prophage sequence. The MEME software suite (35, 36) was used for motif analysis. First, the 20 most conserved motifs at ϕ4 prophage integration sites were selected using the MEME algorithm. Second, the entire host chromosome was searched for motif occurrences using the MAST algorithm (see supplementary materials for details). Frequencies of each prophage integration site were estimated based on the number of read pairs split between prophage and reference chromosomes as a proportion of read pair depth in that region. Open reading frame (ORF) annotations from the published sequence were supplemented using the STRING v10 database (52). Counts of ORFs affected by mutations in more than one population per treatment were implemented using the BioPython library ver. 1.65 (53) and chromosome map plots implemented using the svgwrite library ver. 1.1.3 in Python ver. 2.7.10. Included in the parallel selected loci were those exhibiting the “multi-diverse” signature of unlinked polymorphisms in the same ORFs. The method is implemented in the CheckLinkage option of BAGA (http://github.com/daveu/baga) (54) and discussed in the supplementary materials.

Relative free phage abundances in endpoint populations were estimated separately for each phage using a qPCR assay of DNAase-treated supernatants, using primers targeted to each phage, and comparison to a set of standards of known concentration. Competitions were performed between endpoint populations against the ancestral PAO1 (labelled with a gentamicin resistance marker), or an isogenic LES phage-resistant competitor PAO1Δϕ4 (labelled with a tetracycline resistance marker), in conditions identical to one transfer of the selection experiment. The density of each competitor was determined by plating onto antibiotic selective and non-selective media. Fitness was calculated as the selection rate constant. Free phage densities were measured for LESϕ4 lysogens in both PAO1 and PAO1Δϕ4. Ten independent lysogens were constructed in each host background (PAO1 and PAO1Δϕ4) and cultured in LB until stationary phase, and free phage densities in the supernatant were determined using a plaque assay. Full methods are included in the supplementary information.

ACKNOWLEDGEMENTS

This work was funded by project grants from The Wellcome Trust (089215/Z/09/Z awarded to CW & MAB and 093306/Z/10 awarded to SP, CW & MAB), and a studentship co-funded by Medical Research Council and the Institute of Infection and Global Health, University of Liverpool. SOB is funded by the Income Trust Ovarian Cancer Centre. SC, FR and DM are supported by the National Institutes of Health (NIH) (1R01AI106470-01A2) to study Pseudomonas aeruginosa lung pathogenesis and community structure. This work was supported by the American Lung Association and the LEUKAemia Research Fund. The use of DNA sequencing facilities at the Free University of Brussels (F.V.) was supported by the European Commission (Marie Curie Actions: Initial Training Networks, MRCRTN-281434-2010). The authors thank the laboratory of Dr. Janaszak for providing the PAO1Δϕ4 strain and for helpful discussions and critical reading of the manuscript. The authors also thank Dr. R. S. Wise for help in the preparation of the manuscript and for providing valuable comments on the manuscript. The authors declare no competing financial interests.

Data availability

The raw DNA sequencing data and other raw supplementary data can be found as a linked dataset in the supplementary materials. The raw DNA sequencing data and other raw supplementary data can be found as a linked dataset in the supplementary materials.

