Aversive responses of captive sandbar sharks Carcharhinus plumbeus to strong magnetic fields

Siegenthaler, Andjin, Niemantsverdriet, PRW, Laterveer, M and Heitkönig, IMA

http://dx.doi.org/10.1111/jfb.13064

<table>
<thead>
<tr>
<th>Title</th>
<th>Aversive responses of captive sandbar sharks Carcharhinus plumbeus to strong magnetic fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Siegenthaler, Andjin, Niemantsverdriet, PRW, Laterveer, M and Heitkönig, IMA</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/39431/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2016</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
doi:10.1111/jfb.13064
Aversive responses of captive sandbar sharks
(Carcharhinus plumbeus) to strong magnetic fields

Short title: Carcharhinus plumbeus responses to magnetic fields

A. Siegenthalera,b,1,*, P. R. W. Niemantsverdrietb, M. Laterveerb,2, I. M. A. Heitköniga

a Wageningen University, Resource Ecology Group, Droevendaalsesteeg 3a, 6708 PD Wageningen, the Netherlands
b Rotterdam ZOO, PO Box 532, 3000 AM Rotterdam, The Netherlands
1 Present address: School of Environment & Life Sciences, Room 335, Peel building, University Of Salford, Salford M5 4WT, United Kingdom.
2 Present address: Blue Linked, Slootweg 4, 2728 PD Zoetermeer, The Netherlands.
* Corresponding author: School of Environment & Life Sciences, Room 335, Peel building, University Of Salford, Salford M5 4WT, United Kingdom. T: +44(0)1612953136
E-mail: a.siegenthaler@edu.salford.ac.uk
This experimental study focused on the possible deterrent effect of permanent magnets on adult sandbar sharks, *Carcharhinus plumbeus*. Results showed that the presence of a magnetic field significantly reduced the number of approaches of conditioned *C. plumbeus* towards a target; indicating that adult *C. plumbeus* can be deterred by strong magnetic fields. These data, therefore, confirm that the use of magnetic devices to reduce shark bycatch is a promising avenue.

Key words: Behaviour; Bycatch; Elasmobranch; Fisheries; Magnetoreception; Permanent Magnet
INTRODUCTION

Due to their low fecundity and late maturity, most shark species are highly susceptible to overfishing. In a study about large pelagic sharks in the Northwest Atlantic Ocean, Baum et al. (2003; 2005) estimated a greater than 50% decline of populations in 8 to 15 years. On an annual basis, global mortality is estimated to range between 63 and 273 million sharks per year, which represents an average exploitation rate between 6.4% and 7.9% of the global population (Worm et al., 2013). Sharks are vulnerable to even light fishing pressure, and the decline of these large predators results in community shifts that influence other vulnerable species such as marine mammals and sea turtles (Ferretti et al., 2010). Apart from direct capture of sharks, shark bycatch also contributes to substantial shark mortality (Baum et al., 2003; Verlecar et al., 2007) in commercial longline fisheries (Stevens, 2000; Gilman et al., 2008; Cortés et al., 2010; Zhou et al., 2011) and in beach nets (Cliff et al., 1988; Cliff & Dudley, 1992; O'Connell et al., 2014a, 2014c). Shark bycatch also results in personal injuries, lower catches, and loss of gear (Gilman et al., 2008).

To reduce human injuries and shark bycatch, several shark repellents have been developed. Chemical shark repellents developed for the protection of humans (Gilbert, 1977) are only useful as a directional repellent and need to be delivered directly in the presence of sharks (Smith, 1991; Sisneros & Nelson, 2001). Gear modifications, such as the use of circle hooks instead of the often used j-shaped hooks appear promising (Kaplan et al., 2007) but are not always successful (Read, 2007), and may even be harmful to other protected animals (Gilman et al., 2008). Current shark repellent research focuses on permanent magnets and electropositive metal alloys (O'Connell et al., 2014c). These operate by repelling sharks, making use of
their ability to detect weak electric fields (as small as 5nV cm\(^{-1}\), e.g. Kalmijn, 1971; Haine et al., 2001; Kajiura, 2003). Sharks can detect electric fields that are induced by the reaction of electropositive rare-earth metal alloys with water (Kaimmer & Stoner, 2008; Brill et al., 2009; Tallack & Mandelman, 2009) and by movements through magnetic fields (Klimley, 1993; Kalmijn, 2000; Meyer et al., 2005; Peters et al., 2007). Hence, permanent magnets have the potential to deter sharks (Stoner & Kaimmer, 2008; Rigg et al., 2009; O’Connell et al., 2010, 2011a). The effect of permanent magnets and electropositive metal alloys on the behaviour and bycatch of sharks has been assessed recently in a range of species, but much variation between species, studies, life stages and magnets/metals has been observed (Table I). More research to assess the repulsive effect of magnetic repellents on the behaviour of sharks is therefore necessary.

The sandbar shark, *Carcharhinus plumbeus* (Nardo, 1827) is a member of the family Carcharhinidae and is closely related to several species that are vulnerable to long-line fisheries (Mandelman et al., 2008; O’Connell et al., 2014c). Previous studies on *C. plumbeus* elicited negative responses from juveniles on electropositive metal repellents (Brill et al., 2009), but the possible repulsive effect of permanent magnetic fields on the behaviour of adult *C. plumbeus* still has to be demonstrated (O’Connell et al., 2011b; Hutchinson et al., 2012). Hutchinson et al. (2012) suggested that the absence of a response in marine trials could be due to a particular feeding strategy, or to different sensory modalities. The latter was tested in an experimental environment and it was predicted that captive adult *C. plumbeus* conditioned to associate a target with food will be more reluctant to approach that target when it is fitted with a permanent magnet.
MATERIALS AND METHODS

STUDY ANIMALS AND EXPERIMENTAL DESIGN

Experiments were carried out with three captive adult *C. plumbeus* (160-180 cm total length) at Rotterdam Zoo in the Netherlands. These *C. plumbeus* were caught as neonates along the Florida coastline and transported to Rotterdam Zoo as part of a permanent exhibition. The animals were kept and experiments conducted in this public aquarium (30 x 25 x 5.5 m). The natural seawater in the aquarium was constantly recycled and filtered. Temperature and salinity were kept constant around 25°C and 35, respectively. Also present in in the public aquarium were three other species of shark (*Carachinus acronotus* (Poey, 1860), *Carachinus limbatus* (Müller & Henle, 1839) and *Ginglystoma cirratum* (Bonnaterre, 1788)), turtles and fishes.

Because of the shared “habitat”, the filtration, circulation and heating systems could not be disconnected from the aquarium during the experiments. The standard procedure at Rotterdam Zoo is to feed sharks up to 4% of their body mass four times a week. The *C. plumbeus* were conditioned to touch a target (PVC, diameter 20 cm) in return for food. After a successful hit, a sound signal rang as a positive reinforcer and food was presented to the shark at 1.5 m distance from the target (see: Clark, 1959; Wright & Jackson, 1964).

The experimental design involved three *C. plumbeus* which were individually tested (and recorded on video) in the presence or absence of a magnetic field (magnetic treatment, see below). Attachment of the magnet or sham magnet to the target was alternated per session, with three sessions per treatment. The number of approaches (steady, straight-line swimming through the water column in the direction of the target) were then recorded. Hitting the target with the anterior part of the head was scored as a successful approach. Approaching the target without physically touching
the target, and/or showing clear avoidance behaviour such as a sharp turn and/or acceleration away from the target (O’Connell et al., 2014a) was scored as an unsuccessful approach.

MAGNETIC TREATMENT

The treatment consisted of a cylindrically shaped (Ø70xh30 mm) 360 mT neodymium-iron-boron (Nd$_2$Fe$_{14}$B) magnet with a nickel-copper-nickel coating (Sprecher et al., 2014) or a cylindrically shaped steel sham magnet (Ø70xh30 mm) being attached vertically with its top to the back side of the target. Both the magnet and sham magnet were placed inside a PVC case to prevent corrosion and obscure any visual differences between them. The thickness of the case was 4 mm at the top and bottom, and 1.8 mm at the sides. The magnetic field of the magnet inside its PVC case was measured with a Magnet-physik, Dr Steingroever GmbH, FH (http://www.magnet-physik.de/) 51Gauss/Teslameter on a 30x10 cm2 grid (one data point per 2 cm2) outside the aquarium. It was not possible to measure the magnetic field while the magnet was submerged. A schematic representation of the magnetic field around the neodymium magnet is shown in Fig. 1. Due to the vertical orientation of the magnet, *C. plumbeus* approaching the target were exposed to magnetic pole (50-250 mT).

DATA ANALYSES

A binomial test (2-sided) was used to analyse the differences in *C. plumbeus* response to the magnet and sham magnet in the total number of approaches and the number of successful approaches per individual *C. plumbeus*. Specimens were submitted to three trials per treatment, in which they showed a total number of 133 approaches. Eleven
approaches (9% of all approaches) were excluded from further analysis because the C. plumbeus were not individually recognizable (due to the angle of the approach and strong similarity between the two females), when an interaction between C. plumbeus and other animals elicited a distinct change in the specimen’s behaviour, or when the whole sequence from approaching to leaving the target area was not entirely visible to the observer.

RESULTS

The attachment of the magnet on the target had a significant effect on C. plumbeus’ behaviour. The total number of approaches towards the target did not differ significantly between the treatments (Fig. 2, binomial test: Male 1, N = 33, $P > 0.05$; Female 1, N = 45, $P > 0.1$; Female 2, N = 65, $P > 0.1$). However, all three C. plumbeus showed a significantly lower number of successful approaches to the target when a magnet was attached to the target compared to when a sham magnet was attached (Fig. 2, binomial test: Male 1, N = 19, $P < 0.001$; Female 1, N = 13, $P < 0.01$; Female 2, N = 28, $P < 0.01$).

DISCUSSION

Conditioned adult C. plumbeus responded negatively to a strong magnetic field during direct approaches towards a permanent neodymium magnet. This result is consistent with the results of both laboratory and field experiments on juvenile C. plumbeus by Brill et al. (2009) but contrasts with findings by the results of long-line experiments on juvenile C. plumbeus by O’Connell et al. (2011b) and Hutchinson et al. (2012). According to O’Connell et al. (2011b), the fact that they only captured and tested juvenile C. plumbeus for a magnetic response might explain their observed lack of
response to magnetic repellents. This is possibly because juvenile \textit{C. plumbeus’}\n
electroreception sensitivities differ from adults owing to differences in ampullary

canal length. During the present study, all \textit{C. plumbeus} were adults with full

electroreception sensitivities. Hutchinson \textit{et al.} (2012), suggested that differences in

environmental conditions, especially visibility, could affect sensory modalities used

by sharks. Their hypothesis that \textit{C. plumbeus} living in clear waters are less susceptible

to electropositive metals is in contrast with the results of the present study which was

conducted in an aquarium with good visibility. O’Connell \textit{et al.} (2011b) also noted

that the differences between their study and the study of Brill \textit{at al.} (2009) might be

an artefact of a low sample size. With only three individuals tested, this is a

recognized issue in the present study as well. In this case, all three \textit{C. plumbeus}

showed a significant negative response when approaching a permanent magnet which

is in line with studies on several species within the Carcharhinidae (Table I).

In the aquarium of Rotterdam Zoo, \textit{C. plumbeus} food intake depended on the number

of times they hit the target. Consequentially, this refusal to hit the target resulted in a

lower food intake. Food deprivation is an important factor known to effect

electrosensory repellent success (Stoner & Kaimmer, 2008; O’Connell \textit{et al.}, 2014c).

Unfortunately, it should be noted that due to logical constrains of working in a zoo, no

food deprivation experiments were conducted during this study. The specimens were

fed following the normal procedures on the days between the experiments. Since

turbidity, water temperature and salinity were virtually constant during this study,

these factors were unlikely to affect the results. Moreover, no habitation effects were

observed (O’Connell \textit{et al.}, 2011a). The possible effect of conspecific density on the

effect of the repellent (Robbins \textit{et al.}, 2011; O’Connell \textit{et al.}, 2014c) could not be

tested since the \textit{C. plumbeus} were trained to approach the target individually.
The individual responses could be evaluated by repeated trials due to the captive nature of this study. This study clearly demonstrates that captive adult *C. plumbeus* show an aversive response to a strong magnetic field at the cost of a food award. Depletion of top predator populations can seriously affect oceans all around the world through cascading effects in the food web (Springer *et al.*, 2003; Myers *et al.*, 2007), which causes unpredictable changes in the ecosystem. The use of magnetic devices to reduce shark bycatch is a promising avenue that could benefit both the ecosystems and fishermen, especially since many teleost species (but see Öhman *et al.*, 2007) for several exceptions) are not repelled by these devices (Rigg *et al.*, 2009; O’Connell *et al.*, 2011b; O’Connell & He, 2014).

We are very grateful to W. Vos of Pipesurvey International for providing a magnetometer to make measurements of the magnetic fields possible. We also thank the caretakers of the Oceanium building of Rotterdam Zoo for their help and support in taking care of the sharks. Funding was provided by Rotterdam Zoo in the Netherlands. The experimental study was approved by the Animal Experiments Committee of Wageningen University as protocol 2008021.b on 18 April 2008.

References

Table I. An overview of the effects of electropositive or magnetic materials on the behaviour of different shark species.

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name</th>
<th>Wild or Captive</th>
<th>Life stage</th>
<th>Study treatment</th>
<th>Shark response</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alopias pelagicus (Nakamura, 1935)</td>
<td>Pelagic thresher shark</td>
<td>W</td>
<td>NS</td>
<td>Electropositive metal alloy</td>
<td>No response</td>
<td>Hutchinson et al. (2012)</td>
</tr>
<tr>
<td>Carcharhinus plumbeus (Nardo 1827)</td>
<td>Sandbar shark</td>
<td>C; W</td>
<td>Juvenile</td>
<td>Electropositive metal alloy</td>
<td>Aversion</td>
<td>Brill et al. (2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W</td>
<td>Juvenile</td>
<td>Barium-ferrite magnet; Electropositive metal alloy; Rare earth magnet</td>
<td>No response</td>
<td>O'Connell et al. (2011b); Hutchinson et al. (2012)</td>
</tr>
<tr>
<td>Carcharhinus acronotus (Poey, 1860)</td>
<td>Blacknose shark</td>
<td>W</td>
<td>NS</td>
<td>Barium-ferrite magnet</td>
<td>No response</td>
<td>O'Connell & He (2014)</td>
</tr>
<tr>
<td>Carcharhinus amblyrhynchos (Bleeker, 1856)</td>
<td>Grey reef shark</td>
<td>C</td>
<td>NS</td>
<td>Ferrite magnet</td>
<td>Aversion</td>
<td>Rigg et al. (2009)</td>
</tr>
<tr>
<td>Carcharhinus galapagensis (Snodgrass & Heller, 1905)</td>
<td>Galapagos shark</td>
<td>W</td>
<td>NS</td>
<td>Rare earth magnet</td>
<td>Aversion</td>
<td>Robbins et al. (2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W</td>
<td>NS</td>
<td>Ferrite magnet; Electropositive metal alloy</td>
<td>No response</td>
<td>Robbins et al. (2011)</td>
</tr>
<tr>
<td>Carcharhinus leucas (Müller & Henle, 1839)</td>
<td>Bull shark</td>
<td>W</td>
<td>NS</td>
<td>Barium-ferrite magnet</td>
<td>Aversion</td>
<td>O'Connell et al. (2014c)</td>
</tr>
<tr>
<td>Carcharhinus limbatus (Müller & Henle, 1839)</td>
<td>Blacktip shark</td>
<td>W</td>
<td>Adult</td>
<td>Barium-ferrite magnet</td>
<td>Aversion</td>
<td>O'Connell et al. (2011b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W</td>
<td>Adult</td>
<td>Rare earth magnet</td>
<td>No response</td>
<td>O'Connell et al. (2011b)</td>
</tr>
<tr>
<td>Carcharhinus perezi (Poey, 1876)</td>
<td>Caribbean reef shark</td>
<td>W</td>
<td>NS</td>
<td>Barium-ferrite magnet</td>
<td>Aversion</td>
<td>O'Connell and He (2014)</td>
</tr>
<tr>
<td>Carcharhinus tilstoni (Whitley, 1950)</td>
<td>Australian blacktip shark</td>
<td>C</td>
<td>NS</td>
<td>Ferrite magnet</td>
<td>Aversion</td>
<td>Rigg et al. (2009)</td>
</tr>
<tr>
<td>Carcharodon carcharias (L.)</td>
<td>Great white shark</td>
<td>W</td>
<td>NS</td>
<td>Barium-ferrite magnet</td>
<td>Aversion</td>
<td>O'Connell et al. (2014a)</td>
</tr>
<tr>
<td>Galeocerdo caviar (Péron & Lesueur, 1822)</td>
<td>Tiger shark</td>
<td>W</td>
<td>NS</td>
<td>Electropositive metal alloy</td>
<td>No response</td>
<td>Hutchinson et al. (2012)</td>
</tr>
<tr>
<td>Ginglymostoma cirratum (Bonnaterre, 1788)</td>
<td>Nurse shark</td>
<td>W</td>
<td>NS</td>
<td>Barium-ferrite magnet</td>
<td>Aversion</td>
<td>O'Connell et al. (2010); O'Connell & He (2014)</td>
</tr>
<tr>
<td>Glyphis glyphis (Müller & Henle, 1839)</td>
<td>Speartooth shark</td>
<td>C</td>
<td>NS</td>
<td>Ferrite magnet</td>
<td>Aversion</td>
<td>Rigg et al. (2009)</td>
</tr>
<tr>
<td>Isurus oxyrinchus (Rafinesque, 1810)</td>
<td>Shortfin mako</td>
<td>W</td>
<td>NS; Juvenile</td>
<td>Electropositive metal alloy</td>
<td>No response</td>
<td>Hutchinson et al. (2012); Godin et al. (2013)</td>
</tr>
<tr>
<td>Species</td>
<td>Common Name</td>
<td>Status</td>
<td>Species Type</td>
<td>Stimulus</td>
<td>Response</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>---------</td>
<td>--------------</td>
<td>-------------------------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Mustelus canis (Mitchill, 1815)</td>
<td>Dusky smooth-hound</td>
<td>W</td>
<td>Adult</td>
<td>Rare earth magnet</td>
<td>Aversion</td>
<td>O'Connell et al. (2011b)</td>
</tr>
<tr>
<td>Negaprion brevirostris (Poey, 1868)</td>
<td>Lemon shark</td>
<td>C; W</td>
<td>Juvenile; NS</td>
<td>Barium-ferrite magnet</td>
<td>Aversion</td>
<td>O'Connell et al. (2011a); O'Connell et al. (2014b); O'Connell & He (2014)</td>
</tr>
<tr>
<td>Prionace glauca (L.)</td>
<td>Blue shark</td>
<td>W</td>
<td>NS; Juvenile</td>
<td>Electropositive metal alloy</td>
<td>No response</td>
<td>Hutchinson et al. (2012); Godin et al. (2013)</td>
</tr>
<tr>
<td>Rhizoprionodon acutus (Rüppell, 1837)</td>
<td>Milk shark</td>
<td>C</td>
<td>Mixed</td>
<td>Ferrite magnet</td>
<td>Aversion</td>
<td>Rigg et al. (2009)</td>
</tr>
<tr>
<td>Rhizoprionodon terraenovae (Richardson, 1836)</td>
<td>Atlantic sharpnose shark</td>
<td>W</td>
<td>Mixed</td>
<td>Rare earth magnet</td>
<td>Aversion</td>
<td>O'Connell et al. (2011b)</td>
</tr>
<tr>
<td>Scyliorhinus canicula (L.)</td>
<td>Small spotted catshark</td>
<td>C</td>
<td>Mixed</td>
<td>Rare earth magnet</td>
<td>Aversion</td>
<td>Smith & O'Connell (2014)</td>
</tr>
<tr>
<td>Sphyra lewini (Griffith & Smith, 1834)</td>
<td>Scalloped hammerhead shark</td>
<td>C; W</td>
<td>NS</td>
<td>Ferrite magnet; Electropositive metal alloy</td>
<td>Aversion</td>
<td>Rigg et al. (2009); Hutchinson et al. (2012)</td>
</tr>
<tr>
<td>Squalus acanthias (L.)</td>
<td>Spiny dogfish</td>
<td>C; W</td>
<td>NS; Adult</td>
<td>Electropositive metal alloy; Rare earth magnet</td>
<td>No response</td>
<td>Kaimmer & Stoner (2008); Stoner & Kaimmer (2008)</td>
</tr>
</tbody>
</table>

C: Captive; W: Wild; NS: Not specified
Fig. 1. Stylized spatial distribution of the magnetic field of a 70x30 mm neodymium cylinder shaped magnet. Proportions are shown to scale. Magnetic induction was measured with a Magnet-physik, Dr Steingroever GmbH, FH 51 Gauss/Teslameter. Background magnetic field was 0.3 mT.
Fig. 2. Total number of approaches to the target (light bars) and the number of successful approaches to the target (dark bars) by three *C. plumbeus*. Hitting the target with the anterior part of the head was scored as a successful approach. A magnet (360 mT) or a sham magnet was attached to the target during the target training (three trails per treatment). The difference in the number of successful hits on the target between the dummy and magnet treatment was significant for all three *C. plumbeus* (Binomial test, $P<0.01$).