Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct

Bhatti, MM, Zeeshan, A, Ijaz, N, Beg, OA and Kadir, A

http://dx.doi.org/10.1016/j.jestch.2016.11.003

<table>
<thead>
<tr>
<th>Title</th>
<th>Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Bhatti, MM, Zeeshan, A, Ijaz, N, Beg, OA and Kadir, A</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/40763/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2016</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct

M.M. Bhatti, A. Zeeshan, N. Ijaz, O. Anwar Bég, A. Kadir

1. Introduction

Thermal radiation heat transfer is known to have an important influence on many industrial processes and technological devices at high temperature. These include rocket propulsion [1], plume dynamics [2], solar collector performance [3], materials processing [4], combustion systems [5] and fire propagation [6]. With developments in computational and analytical tools, in recent years, increasing attention has been directed at thermal convection flows with significant radiative flux. In various convection and conduction problems the rate of energy transfer between two points is strongly dependent on the temperature difference at the locations of order one. However, the transfer rate of energy due to thermal radiation between two bodies is dependent upon the absolute temperature difference. It is well established that the importance of radiation between two bodies is dependent upon the absolute temperature difference. It is well established that the importance of radiation between two bodies is dependent upon the absolute temperature difference. It is well established that the importance of radiation between two bodies is dependent upon the absolute temperature difference. It is well established that the importance of radiation between two bodies is dependent upon the absolute temperature difference. It is well established that the importance of radiation between two bodies is dependent upon the absolute temperature difference. It is well established that the importance of radiation between two bodies is dependent upon the absolute temperature difference. It is well established that the importance of radiation between two bodies is dependent upon the absolute temperature difference. It is well established that the importance of radiation between two bodies is dependent upon the absolute temperature difference.

Biologically-inspired propulsion systems are currently receiving significant interest in the aerospace sector. Since many spacecraft propulsion systems operate at high temperatures, thermal radiation is important as a mode of heat transfer. Motivated by these developments, in the present article, the influence of nonlinear thermal radiation (via the Rosseland diffusion flux model) has been studied on the laminar, incompressible, dissipative EMHD (Electro-magneto-hydrodynamic) peristaltic propulsive flow of a non-Newtonian (Jeffery’s viscoelastic) dusty fluid containing solid particles through a porous planar channel. The fluid is electrically-conducting and a constant static magnetic field is applied transverse to the flow direction (channel walls). Slip effects are also included. Magnetic induction effects are neglected. The mathematical formulation is based on continuity, momentum and energy equations with appropriate boundary conditions, which are simplified by neglecting the inertial forces and taking the long wavelength and lubrication approximations. The boundary value problem is then rendered non-dimensional using appropriate variables and the resulting system of ordinary differential equations is solved analytically. The impact of various emerging parameters dictating the non-Newtonian propulsive flow i.e. Prandtl number, radiation parameter, Hartmann number, permeability parameter, Eckert number, particle volume fraction, electric field and slip parameter are depicted graphically. Increasing particle volume fraction is observed to suppress temperature magnitudes. Furthermore, the computations demonstrate that an increase in particle volume fraction reduces the pumping rate in retrograde pumping region whereas it causes the opposite effect in the co-pumping region. The trapping mechanism is also visualized with the aid of streamline contour plots. Increasing thermal radiation elevates temperatures. Increasing Hartmann (magnetic body force) number decreases the size of the trapping bolus whereas the quantity of the does not effected. Conversely increasing particle volume fraction reduces the magnitude of the trapping bolus whereas the number of trapped bolus remains constant.

© 2016 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
challenging. Recourse is therefore generally made to one of the many algebraic flux models developed which are differential in nature and while simplifying the mathematical complexity retain important physical characteristics of actual radiative transfer processes. Examples of such models include the Milne-Eddington approximation [7], Rosseland diffusion flux model [8], Schuster-Schwartzchild two-flux model [9], Tragott P1 differential model [10] and the Cogley-Vincenti-Giles flux model [11]. An excellent summary of these and other models is provided by Siegel and Howell [12]. Numerous studies have employed such models to investigate heat and also mass transfer in boundary layer and orated in detail by Irgens [21]. Furthermore in the process chemical nomencla. The constitutive equations for many such fluids are elab-Rivlin model [20]) to a new branch of propulsion studies including els, in particular viscoelastic theories (e.g. second order Reiner-and have diversified the application of non-Newtonian fluid mod-ducts with radiative transfer. These developments are on ongoing identified the significant potential of non-Newtonian flows in-Most studies in this regard have employed the Rosseland model interest in high temperature fabrication of polymers and plastics. and a finite difference to study enrobing flow and high tempera-
sion. In this so-called Macron Launched Propulsion (MLP) system, fluids can be electromagnetically controlled for micro-scale and nano-scale operations on space stations. Other important applications of magnetized peristaltic flows in biochemical engineering have been identified by Kim et al. [33] who have also computed efficient operating frequencies and described robust micro-fabrication methods. These technological strides have stimulated considerable interest in the refinement of mathematical models of magnetic peristaltic propulsion in both purely fluid and also saturated porous media. Many multi-physical simulations with and without convective and/or radiative heat transfer have been communicated. Representative studies in this regard include Hayat et al. [34] who also considered convective heat transfer in peristaltic wave propagation in conduits. Tripathi and Bég [35] addressed transient and finite length effects in hydromagnetic peristaltic pump flows. Srinivas and Kothandapani [36] studied combined heat and species diffusion in magnetic peristaltic flow in porous media with wall deformation. Several authors have also examined non-Newtonian magnetohydrodynamic peristaltic propulsion. Pandey and Chaube [37] obtained analytical solutions for peristaltic pumping of magnetized Eriengen micropolar liquids in tubes. Bég et al. [38] used the Williamson viscoelastic model to theoretically hydromagnetic peristaltic pumping in conduits and obtained semi-numerical solutions with a modified Zhou differential transform method (DTM). Further studies of non-Newtonian MHD peristaltic pumping have been communicated recently by Hayat et al. [39] and Akbar et al. [40]. In the context of porous media peristaltic flows, several excellent studies have also been communicated. Porous media provide a robust mechanism for regulating flows and damping. A porous medium comprises a solid matrix (either rigid or deformable) which is interconnected with voids which are in single phase systems, saturated with the percolating fluid. The flow quantities such as velocity, pressure are generally irregular on the microscopic scale and the Darcy law (or modifications) is valid for low Reynolds, viscous-dominated flows, which characterize peristaltic systems. Recent studies in this regard include Khan et al. [41] who deployed the third grade differential viscoelastic model and Tripathi et al. [42] who studied peristaltic pumping of a fractional Oldroyd-B viscoelastic fluid in Darcy-Brinkman porous media. These studies showed that trapping and axial velocities are strongly influenced by permeability of the porous medium. Radiative heat transfer effects on peristaltic flow of Sikso viscoelastic fluids has also been studied by Mehmood and Fetecau [43], wherein it has been shown that temperatures are elevated with increasing radiation parameter, amplitude ratio, and channel width ratio.

The above investigations have invariably considered single-phase systems. However in many technological applications including micro-propulsion, vapour deposition, combustion, aerosol filtration and lunar ash flow, multi-phase suspensions arise. Such systems are often referred to as “dusty” fluids and the solid particle motion in these fluid-particulate suspensions has a significant influence on thermofluid characteristics. Thermal conductivity of working fluids in industrial devices may be improved via the careful introduction of small solid particles in the fluids to form slurries. These particles may be polymeric, metallic or non-metallic. The thermal conductivity of dusty fluids i.e. fluids with suspended solid particles can be manipulated to be greater than conventional fluids. Magnetohydrodynamic dusty flows are also of relevance to magnetic propulsion systems, accelerators, plasma energy generators etc. The performance and efficiency of these devices are affected by the presence of solid particles that may be present in the form of soot or ash. When the particle concentration is very high, this may manifest in mutual particle interaction with higher phase viscous stresses and can result in a particle phase viscosity. Marble [44] has provided a lucid summary of dusty fluid mechanics and transport phenomena. Several analyses of peristaltic flows of dusty fluids have been reported in the scientific literature. Meckheimer et al. [45] obtained perturbation solutions for peristaltic hydrodynamics of a particle fluid suspension in a planar channel, discussing the influence of particle concentration on augmented and other pumping modes. Bhatti and Zeeshan [46] obtained closed-form solutions for slip peristaltic flow of viscoelastic Casson fluid-particle suspension in a channel. They showed that increasing particle volume fraction decelerates the flow along the channel. Nagarani and Sarojiang [47] derived perturbation solutions for peristaltic transport of power law fluids containing a suspension of small particles in a two-dimensional channel, noting that velocity of the suspended particles is markedly lower than that of the fluid under various pumping conditions. Kamel et al. [48] studied slip effects on peristaltic propulsion of fluid-particle suspensions, observing that critical reflux pressure is of lesser magnitude for the particle-fluid suspension compared with the particle-free fluid and is sensitive to wall slip.

With recent developments in high-temperature peristaltic pumping in mind and also novel particulate non-Newtonian propellants [49], the current study examines theoretically nonlinear thermal radiation effects on EMHD peristaltic propulsion of non-Newtonian fluid-particle (dusty) suspensions in a planar channel containing a homogenous porous medium. Both electrical and magnetic field effects are considered for the first time in dusty peristaltic dynamics. The Jeffreys viscoelastic model is employed to mimic rheological properties since this model has not been explored extensively in dusty fluid dynamics although it provides a good representation for propellants. The governing equations for fluid phase and particle phase are modeled by neglecting the inertial forces and considered the long wave length approximation. The transformed, non-dimensional coupled differential equations of momentum and energy for both particulate and fluid phases are solved analytically under physically realistic boundary conditions. The influence of emerging parameters on velocity, temperature and pressure rise distributions is elaborated at length. Furthermore contour plots for streamlines are provided to visualize trapping phenomena and sensitivity to non-Newtonian and other parameters. The current mathematical problem, to the authors’ knowledge, has not been investigated in the technical literature.

2. Mathematical model

Consider the peristaltic flow and heat transfer in a dusty Jeffrey’s viscoelastic fluid-particle suspension induced by sinusoidal wave motion of walls in a two-dimensional planar channel containing an isotropic, homogenous porous medium. Temperature is sufficiently high to invoke nonlinear thermal radiation effects. Thermal radiation is assumed to be present in the form of a unidirectional flux in the \vec{Y} – direction i.e. q. Viscous heating and heat generation/absorption effects are present. The fluid-suspension is electrically-conducting, gray, emitting and absorbing, but non-scattering and the flow is subjected to a transverse constant magnetic field effects of strength, B_0. Magnetic induction and Hall current effects are neglected. A Cartesian coordinate system is selected i.e. the \vec{X}-axis is orientated along the longitudinal axis of the channel i.e. in the direction of wave propagation while the \vec{Y}-axis is taken normal to it. The physical model is illustrated in Fig. 1.

The geometry of the wall can be written as:

$$H(\vec{X}, t) = \vec{a} + b \sin \frac{2\pi}{\lambda}(\vec{X} - \vec{c}t).$$

(1)

The magnetic field is considered of the following form:

$$\vec{B} = (0, B_0, 0).$$

(2)
Ohm’s Law states:

\[J = \sigma[E \times B] \] \hspace{1cm} (3)

The governing equation of continuity, linear momentum and energy equations for fluid phase and dust phase (incorporating the appropriate Lorentzian magnetohydrodynamic body force terms only in the fluid phase) can be written, following Mekeleiber et al. [45], Bhatti and Zeshan [46], Nagarani and Sarojamm [47] and Kamel et al. [48], as:

Fluid phase:

\[\frac{\partial \bar{U}_f}{\partial X} + \frac{\partial \bar{V}_f}{\partial Y} = 0, \] \hspace{1cm} (4)

\[(1 - C)\rho_f \frac{\partial \bar{U}_f}{\partial t} + \bar{U}_f \frac{\partial \bar{U}_f}{\partial X} + \bar{V}_f \frac{\partial \bar{U}_f}{\partial Y} \]

\[= -(1 - C) \frac{\partial P}{\partial X} + (1 - C) \left(\frac{\partial}{\partial X} S_{XX} + \frac{\partial}{\partial Y} S_{XY} \right) + \frac{CS}{\sigma_f} (\bar{U}_p - \bar{U}_f) \]

\[+ J_k \times B - \frac{\mu}{K} \bar{U}. \] \hspace{1cm} (5)

\[(1 - C)\rho_f \frac{\partial \bar{V}_f}{\partial t} + \bar{U}_f \frac{\partial \bar{V}_f}{\partial X} + \bar{V}_f \frac{\partial \bar{V}_f}{\partial Y} \]

\[= -(1 - C) \frac{\partial P}{\partial Y} + (1 - C) \left(\frac{\partial}{\partial X} S_{XY} + \frac{\partial}{\partial Y} S_{YY} \right) + \frac{CS}{\sigma_f} (\bar{V}_p - \bar{V}_f) \]

\[+ J_k \times B - \frac{\mu}{K} \bar{V}. \] \hspace{1cm} (6)

\[(1 - C)\rho_f \left(\frac{\partial T_f}{\partial t} + \bar{U}_f \frac{\partial T_f}{\partial X} + \bar{V}_f \frac{\partial T_f}{\partial Y} \right) \]

\[= k(1 - C) \frac{\partial^2 T_f}{\partial Y^2} + \frac{\rho_f C_p}{\sigma_f} (T_f - T_b) + \frac{CS}{\sigma_f} (\bar{U}_p - \bar{U}_f)^2 \]

\[+ \frac{\partial \bar{U}_f}{\partial Y} (1 - C)S_{XY} - \frac{\partial \bar{V}_f}{\partial Y} + \sigma(E - B_0 \bar{U}_f)^2. \] \hspace{1cm} (7)

Dust phase:

\[\frac{\partial \bar{U}_p}{\partial X} + \frac{\partial \bar{V}_p}{\partial Y} = 0, \] \hspace{1cm} (8)

\[C_p p \left(\frac{\partial \bar{U}_p}{\partial t} + \bar{U}_p \frac{\partial \bar{U}_p}{\partial X} + \bar{V}_p \frac{\partial \bar{U}_p}{\partial Y} + \frac{\partial \bar{P}}{\partial X} + \frac{CS}{\sigma_p} (\bar{U}_f - \bar{U}_p) \right) = -C \frac{\partial \bar{P}}{\partial Y} \] \hspace{1cm} (9)

\[\frac{\rho_f C}{\sigma_f} \left(\frac{\partial T_p}{\partial t} + \bar{U}_p \frac{\partial T_p}{\partial X} + \bar{V}_p \frac{\partial T_p}{\partial Y} + \frac{\partial P}{\partial Y} \right) = \rho_p C_{pcp} (T_f - T_b). \] \hspace{1cm} (10)

\[\mu_p = \frac{\mu_0}{1 + \lambda_1}; \hspace{1cm} \lambda(\lambda - 2\lambda_1). \] \hspace{1cm} (11)

The mathematical expression for the drag coefficient and the empirical relation for the viscosity of the fluid-particle (dusty) suspension can be defined [46–48] as follows:

\[S = \frac{9\mu_0}{2\lambda(\lambda - 2\lambda_1)}; \hspace{1cm} \lambda = \frac{4 + 3\sqrt{8C - 3C^2} + 3C}{(2 - 3C)^2}, \]

\[\mu_p = \frac{\mu_0}{1 + \lambda_1}. \hspace{1cm} \lambda = 0.07e^{2.49C - 1.896C^2}. \] \hspace{1cm} (12)

Employing a Rosseland diffusion flux model, the integro-differential equation for radiative transfer can be reduced to a Fourier-type diffusion equation analogous to that describing heat conduction, groundwater flow, electrostatic potential etc. It is important to note that the Rosseland model is quite accurate for optically-thick media where thermal radiation propagates a limited distance prior to encountering scattering or absorption. The refractive index of the fluid-particle suspension is assumed to be constant, intensity within the fluid is nearly isotropic and uniform and wavelength regions exist where the optical thickness is usually in excess of five [24,26]. The nonlinear radiative heat flux can be written effectively as:

\[q_r = \frac{4\sigma}{3k} \frac{\partial T^4}{\partial Y} - \frac{16\sigma T^4}{3k} \frac{\partial T}{\partial Y}. \] \hspace{1cm} (13)

The dusty fluid has viscoelastic characteristics and to this end the Jeffreys model is implemented. The appropriate stress tensor is:

\[S = \frac{\mu_0}{1 + \lambda_1} (\dot{\gamma} + \dot{\lambda_1}). \] \hspace{1cm} (14)

To simplify the peristaltic flow problem it is convenient to describe the transformation of variables from the fixed frame to the wave (laboratory) frame:

\[\bar{X} = \bar{X} - \bar{c}t; \hspace{1cm} \bar{Y} = \bar{Y}; \hspace{1cm} \bar{U}_f = \bar{U}_f - \bar{c}; \hspace{1cm} \bar{V}_f = \bar{V}_f; \hspace{1cm} \bar{P} = \bar{P}. \] \hspace{1cm} (15)

The moving boundary value problem may be further simplified by the introduction of the following non-dimensional quantities

\[x = \frac{\bar{X}}{h}; \hspace{1cm} y = \frac{\bar{Y}}{a}; \hspace{1cm} u_{fp} = \frac{\bar{U}_f}{\bar{c}}; \hspace{1cm} \eta_f = \frac{\bar{T}_f - \bar{T}_o}{\bar{T}_b - \bar{T}_o}; \hspace{1cm} \phi = \frac{\bar{P}}{a}. \]

\[p = \frac{a^2}{\lambda c} \frac{\partial^2 \bar{\eta}_f}{\partial \eta_f^2}; \hspace{1cm} \frac{\partial a}{\lambda c}; \hspace{1cm} \phi_f = \frac{\bar{T}_f - \bar{T}_o}{\bar{T}_b - \bar{T}_o}; \hspace{1cm} P_{fi} = \frac{\mu}{\lambda c}; \hspace{1cm} k = \frac{K}{b_0}. \]

\[\Gamma_1 = \frac{\sigma}{(1 - C)C(1 - T_o)}; \hspace{1cm} \Gamma_2 = \frac{2b_0E_c}{(1 - C)C(1 - T_o)}. \] \hspace{1cm} (16)

Using Eqs. (15) and (16) in Eqs. (4)–(11), and taking the long wavelength and low Reynolds number approximations (i.e. lubrication theory), the resulting equations for the fluid phase can be written as follows:

\[\frac{1}{1 - C} \frac{d}{dx} \frac{d}{dx} \left(M^2 + \frac{1}{k} \right) (\eta_f + 1) + E, \] \hspace{1cm} (17)

\[\frac{1}{(1 - C)^2} \frac{d^2}{dx^2} \left(M^2 + \frac{1}{k} \right) (\eta_f + 1) + E, \] \hspace{1cm} (18)
The equations for the particulate phase emerge as:

\[u_p = u_f - \frac{dp}{dx} \frac{1}{N} \]
\[\theta_p = \theta_f. \]

The corresponding non-dimensional boundary conditions are found to be:

\[u_f(0) = 0, \quad \theta_f(0) = 0 \quad \text{and} \quad u_f(h) = 1 - \frac{\beta}{1 + \lambda_1} u_f(h), \]
\[\theta_f(h) = 1, \quad h = 1 + \phi \sin 2\pi x. \]

3. Analytical solutions

The linearization of the boundary value problem permits the extraction of closed-form solutions. The exact solution of Eqs. (17)–(20) may be shown to take the form:

\[u_f = c_1 + c_4 \cosh \sqrt{1 + \lambda_1} Ny, \]
\[u_p = c_1 + c_4 \cosh \sqrt{1 + \lambda_1} Ny - \frac{dp}{dx} \frac{1}{N_1}, \]
\[\theta_f = c_0 \phi + c_0 \phi^2. \]

The constants \(c_i (i = 1, 2, 3 \ldots) \) appearing in the above equations are defined as follows:

\[c_1 = \frac{(1 + \lambda_1)((1 + \lambda_1)E + \frac{\phi}{\lambda_1})}{(1 + C)(1 - C)\sqrt{1 + \lambda_1} \cosh \sqrt{1 + \lambda_1} Nh + \frac{C}{1 + \lambda_1} \sinh \sqrt{1 + \lambda_1} Nh}, \]
\[c_2 = \frac{P_r}{1 + \frac{3}{4}P_r R_d}, \]
\[c_3 = \sqrt{1 + \lambda_1} \frac{(1 + C)(E - N^2) + \frac{\phi}{\lambda_1}}{(1 + C)(1 - C)\sqrt{1 + \lambda_1} \cosh \sqrt{1 + \lambda_1} Nh + \frac{C}{1 + \lambda_1} \sinh \sqrt{1 + \lambda_1} Nh}, \]
\[c_4 = \frac{-\sqrt{1 + \lambda_1} \frac{(1 + C)(E - N^2) + \frac{\phi}{\lambda_1}}{(1 + C)(1 - C)\sqrt{1 + \lambda_1} \cosh \sqrt{1 + \lambda_1} Nh + \frac{C}{1 + \lambda_1} \sinh \sqrt{1 + \lambda_1} Nh}, \]
\[c_5 = \frac{1}{(1 + C)(1 - C)Nh} \left(-\left(-1 + C \right) c_2^2 c_4 E N_1 - \left(-1 + C \right) c_2^2 c_4 E \left(1 + \lambda_1 \right) M^2 N_1 - 2 \left(-1 + C \right) c_2^2 c_4 E \left(1 + \lambda_1 \right) N^2 N_1 + 8 \left(-1 + C \right) (1 + \lambda_1)^2 N^2 N_1 \right) + \left(-1 + C \right) c_2^2 c_4^2 E^2 \left(1 + \lambda_1 \right)^2 M^2 N_1 - 8 \left(-1 + C \right) c_2^2 c_4 \left(1 + \lambda_1 \right) N_1 \left(2 + c_3 \right) \left(1 + \lambda_1 \right) M^2 \left(-1 + \lambda_1 \right) \sinh \sqrt{1 + \lambda_1} Nh + \left(-1 + C \right) c_2^2 c_4 \left(1 + \lambda_1 \right) N_1 \left(2 + c_3 \right) \left(1 + \lambda_1 \right) M^2 \left(-1 + \lambda_1 \right) \sinh \sqrt{1 + \lambda_1} Nh \right), \]
\[c_6 = \frac{-2 \left(-1 + C \right) c_2^2 E N_1 - \left(-1 + C \right) c_2^2 E \left(1 + \lambda_1 \right) M^2 N_1 - 2 \left(-1 + C \right) c_2^2 E \left(1 + \lambda_1 \right) N^2 N_1 + \left(-1 + C \right) c_2^2 E \left(1 + \lambda_1 \right) M^2 \left(-1 + \lambda_1 \right) \sinh \sqrt{1 + \lambda_1} Nh + \left(-1 + C \right) c_2^2 E \left(1 + \lambda_1 \right) N_1 \left(2 + c_3 \right) \left(1 + \lambda_1 \right) M^2 \left(-1 + \lambda_1 \right) \sinh \sqrt{1 + \lambda_1} Nh \right)}{4 \left(-1 + C \right) (1 + \lambda_1) N_1}. \]

The parameter \(N \) featured in Eqs. (22) and (23) is defined as:

\[N = \sqrt{\frac{M^2}{\lambda}}. \]

The volumetric flow rate is given by integrating across the channel span:

\[Q = (1 - C) \int_0^h u_f dy + C \int_0^h u_p dy. \]

The pressure gradient \(dp/dx \) is obtained after solving Eq. (32) and takes the form:

\[\frac{dp}{dx} = \frac{-\left(1 + C\right)\left(1 + \lambda_1\right)\left(1 - C\right)E c_4 N_1}{(1 + C)(1 - C)Nh\sqrt{1 + \lambda_1} \cosh \sqrt{1 + \lambda_1} Nh + \frac{C}{1 + \lambda_1} \sinh \sqrt{1 + \lambda_1} Nh}. \]

4. Numerical results and discussion

Extensive graphical solutions have been obtained based on computational evaluation of the closed-form solutions presented in Section 3. A parametric study is now conducted of the influence of a number of selected thermo-physical parameters on the peristaltic flow characteristics i.e. fluid and particle phase velocities \((u_f, u_p) \), fluid and particle phase temperatures \((\theta_f, \theta_p) \) and pressure rise \((\Delta p) \) expression for pressure rise in Eqn. (34) is also evaluated numerically with the help of the symbolic computer software Mathematica for the following parametric values: \(E_r = 0.5, C = 0.5, Q = 3, P_r = 5, \beta = 0.2, M = 0.4, k = 1, R_d = 0.5 \). Streamline plots are also presented to visualize bolus formation dynamics in the regime. Table 1 shows the comparison between Newtonian \((\lambda_1 = 0) \) and non-Newtonian fluid \((\lambda_1 \neq 0) \) for velocity and temperature profile.
4.1. Velocity distributions

Figs. 2–4 illustrate the variation in velocity profile against Hartmann number (\(M\)), porous media permeability parameter (\(k\)), particle volume fraction (\(C\)), Jeffrey fluid parameter (\(\lambda_1\)) and slip parameter (\(\xi\)). Fig. 2 that velocity profile decreases due to the increment in the Hartmann number (\(M\)). When the magnetic field is applied to the fluid, it creates a force transverse to the direction of application of the magnetic field. This body force, known as Lorentz force, \(- M^2 (u_f + 1) \), which appears only in the fluid phase momentum Eq. (17), acts the reverse axial direction and therefore generates resistance which decelerates the flow. The velocity magnitudes are therefore suppressed across the channel. However, when the electric field increases then it boost the fluid velocity very rapidly. Fig. 3 shows that that when the permeability parameter (\(k\)) increases then the magnitude of the velocity increases. This parameter arises in the Darcian drag force term, \(-\frac{1}{\mu'f}(u_f + 1)\), also in the fluid phase momentum eqn. (17). With progressively greater permeability, the matrix resistance offered by the solid fibers in the porous medium is depleted. This suppresses the porous drag force and manifests in a fluid acceleration. Again the velocity magnitudes are significantly lower for the Newtonian fluid compared with the non-Newtonian (viscoelastic) case. Flow acceleration in Jeffreys fluids flows has also been identified in other studies including Gaffar et al. [22]. Fig. 3 indicates that with greater particle volume fraction (\(C\)) the magnitude of the velocity decreases markedly. Hence with increasing presence of solid particles in the dusty suspension, the drag forces are enhanced and flow retardation is induced. These observations also concur with earlier studies and confirm the non-trivial, opposing nature of solid particles present in dusty flows as elaborated by Mekheimer et al. [45].

4.2. Temperature profiles

Figs. 5–7 depict the temperature field (fluid and particle are equivalent, based on the present formulation) response to variation in several key parameters. In Fig. 5, the impact of increasing Prandtl number (\(Pr\)) is observed to enhance temperatures. This result is important for those fluid which have high Prandtl numbers but less important for those fluids which have very low Prandtl number (ionized gases etc). The Prandtl number is the ratio of momentum diffusivity to the thermal diffusivity. Larger values of Prandtl number correspond to the case of less heat transfer from the boundary to the fluid. Prandtl number is also the product of dynamic viscosity and specific heat capacity divided by the thermal conductivity of the fluid. For \(Pr < 1\) (of relevance to rheological propellants [49]), thermal diffusivity exceeds the momentum diffusivity and this enhances the transport of heat in the channel dusty suspension, manifesting in an elevation in temperatures. Non-Newtonian (viscoelastic) dusty fluids achieve significantly greater
temperatures than Newtonian fluids, as also observed by Kamel et al. [48]. Fig. 5 shows that with an increment in the permeability parameter \(k \), there is a reduction in temperature profiles. The parameter \(k \) is directly proportional to the permeability of the porous medium in the channel. Since the medium is isotropic only a single permeability is required. As \(k \) increases, the concentration of solid fibers is reduced and this suppresses thermal conduction heat transfer. This leads to a decrease in temperatures i.e. cooling of the regime. Fig. 6 demonstrates that with larger values of radiation-conduction number \(\left(R_d \right) \) and magnetic parameter \((M) \), temperature profile increases. The supplementary work expended in dragging the dusty fluid against the action of the inhibiting magnetic field, is dissipated as thermal energy. This energizes the dusty suspension and elevates temperatures. This is a classical observation in magneto-hydrodynamics and plasma dynamics (see Cramer and Pai [50]) and is achieved for both Newtonian and non-Newtonian fluids. The implication for designers is that more efficient heat transfer is attained with non-Newtonian working dusty fluids than Newtonian dusty fluids, and this tends to be in concurrence with the experimental observations of Florczak et al. [49]. Fig. 7 depicts the response in temperature to a change in the Eckert number \((E_c) \), Temperature profile significantly increases with greater Eckert number \((E_c) \). This parameter represents the conversion of kinetic energy in the channel flow to heat via viscous dissipation. The addition of this supplementary heat significantly elevates temperatures. The values analysed are appropriate for viscous, incompressible flows. Higher values \((E_c > 2)\) are associated with compressible flows and are not relevant to the current inves-
tigation. Inspection of Fig. 7 demonstrates that when the particle volume fraction increases then temperature profile decreases. The presence of solid particles in the dusty fluid therefore consistently depresses the thermal efficiency of transport in the channel. Particles may therefore be introduced judiciously to regulate excessively high temperatures during propulsion.

4.3. Pumping characteristics

(Figs. 8–10) illustrate the pumping characteristics of the propulsion system via plots of pressure rise versus volumetric flow rate. Fig. 8 shows that when the particle volume fraction \(C\) increases then the pumping rate decreases in the retrograde pumping region whereas the converse response (i.e., an increase) is computed in the co-pumping region. From Fig. 9 it is apparent that when the permeability parameter \(k\) increases, in the retrograde pumping region the pumping rate decreases; however in the co-pumping region the opposite behaviour is induced and pumping rate strongly increases. It can analyse from Fig. 8 that with the increment in slip parameter \(\beta\), pumping rate decreases in retrograde pumping region, but its behavior is adverse in free pumping region and co-pumping region. Fig. 10 shows that with greater Hartmann (magnetic body force) number \(M\) the pumping rate increases in the retrograde pumping region and when volume flow rate \(Q\) increases then reverse flow occurs which diminishes the pumping rate in co-pumping region. It depicts from Fig. 10 that the impact of electric field shows similar behavior in all the regions but in the presence of electric field \(E=0\) the pressure increases.

4.4. Trapping mechanism

Another key hydrodynamic characteristic of peristaltic propulsion is trapping, which is visualized best via drawing contours. It generally represents the formation of internally circulating bolus in the fluid. The volume of the bolus in the fluid is enclosed by the streamlines. For this purpose, (Figs. 11–15) are sketched against Hartmann number, particle volume fraction, slip parameter, electric field and permeability parameter. The expression for dimensionless stream function satisfying the D'Alembert continuity equation is defined as:

Please cite this article in press as: M.M. Bhatti et al., Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct, Eng. Sci. Tech., Int. J. (2016), http://dx.doi.org/10.1016/j.jestch.2016.11.003
Fig. 11 demonstrates that when the Hartmann number \((M) \) increases then the size of the trapping bolus decreases very rapidly whereas the number of trapping boluses remains same. It is also evident from Fig. 12 that the impact of increasing particle volume fraction (i.e. greater concentration of solid particles in the dusty suspension) is to reduce the magnitude of the trapping bolus whereas it does not cause any major effect on the number of trapped boluses. Fig. 13 shows that with greater permeability \((k) \) i.e. increased hydrodynamic transmissivity of the porous medium to percolating dusty suspension flow, the size of the bolus is modified very slowly, whereas, the number of the bolus are constant. It can examined from Fig. 14 that for large values of slip parameter \((\beta) \) the magnitude of the trapped bolus increases significantly. Fig. 15 shows that effects of electric field on trapping phenomena. As, we can see from this figure that for large values of electric field \((E) \), a trapping bolus has been observed and it grows in size for higher values of electric field \((E) \).

Additionally we note that it is possible to extend the present analysis to include other characteristics e.g. velocity gradient (shear stress), temperature gradient (Nusselt number) etc which can be evaluated from derivatives of the fundamental functions (velocity and temperature) which have already been studied. For brevity these have been omitted.

\[
u_P = \frac{\partial \phi_P}{\partial y}, \quad \psi_P = -\frac{\partial \phi_P}{\partial x}
\]

(35)
5. Conclusions

A mathematical model has been developed for the influence of nonlinear thermal radiation on Electromagnetohydrodynamic (EMHD) dissipative flow and heat transfer in a viscoelastic, electro-conductive, dusty (fluid-particle) suspension through a uniform porous medium planar channel. Analytical solutions have been derived for the transformed, dimensionless conservation equations for the fluid and particulate phase, subject to physically viable boundary conditions at the channel walls. The major outcomes of the present analysis are summarized below:

- Velocity of the fluid is enhanced with increasing permeability of the porous medium whereas the converse behaviour is computed with increasing Hartmann (magnetic field) parameter and particle volume fraction.
- With increasing Prandtl number and Eckert number, temperatures are significantly elevated.
- Increasing thermal radiation flux (and decreasing conduction heat transfer contribution) and increasing permeability are observed to suppress temperatures in the channel.
- Both fluid velocity and fluid and particle temperatures are markedly reduced with an increase in particle volume fraction.
- With an increment in slip parameter parameter there is an associated elevation in velocity profile.
- Pressure rise is strongly modified with a change in the particle volume fraction and permeability parameters.
- Increasing Hartmann (magnetic) number reduces the size of the trapping bolus but the quantity of these boluses are constant.
- Increasing particle volume fraction (i.e. higher concentration of solid particles in the dust suspension) decreases the size of the trapping bolus very slowly.
- Increasing greater the size of the bolus is modified weakly and there is no change in the quantity of trapping boluses.

The present study has revealed some important characteristics of non-Newtonian dusty flow and heat transfer in magnetized peristaltic propulsion systems. However other rheological models exist which may further elucidate mechanisms of momentum and heat transfer e.g. micropolar fluids [24], and these will be addressed in the near future. Two-phase nanofluids also present significant potential for propulsion thermo-fluid dynamics and interesting studies using these models include Dinarvand et al. [51,52]. Furthermore more complex radiative transfer models (e.g. P1 differential model) [3] may be employed to simulate moment intensity characteristics in the dusty suspension. The subject provides a rich arena for mathematical simulation and it is also hoped that the present investigation will further stimulate experimental studies of magnetic propulsion and heat transfer in non-Newtonian fluids.

References

Please cite this article in press as: M.M. Bhatti et al., Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct, Eng. Tech. Int., http://dx.doi.org/10.1016/j.jesstech.2016.11.003.

