A cognitive framework for the categorisation of auditory objects in urban soundscapes

Woodcock, JS, Davies, WJ and Cox, TJ

http://dx.doi.org/10.1016/j.apacoust.2017.01.027

<table>
<thead>
<tr>
<th>Title</th>
<th>A cognitive framework for the categorisation of auditory objects in urban soundscapes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Woodcock, JS, Davies, WJ and Cox, TJ</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/41296/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2017</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
A cognitive framework for the categorisation of auditory objects in urban soundscapes

J. Woodcock *, W.J. Davies, T.J. Cox

Acoustics Research Centre, University of Salford, Salford, Greater Manchester MS 4WT, United Kingdom

Article info

Article history:
Received 18 August 2016
Received in revised form 23 January 2017
Accepted 24 January 2017

Keywords:
Soundscapes
Auditory objects
Categorisation
Everyday sounds

Abstract

Categorisation is a fundamental cognitive process that plays a central role in everyday behaviour and action. Whereas previous studies have investigated the categorisation of isolated everyday sounds, this paper presents an experiment to investigate the cognitive categorisation of everyday sounds within their original context. A group of eighteen expert and non-expert listeners took part in a free sorting task using 110 sounds identified within ambisonic reproductions of urban soundscapes. The participants were asked to sort the objects into groups of sounds that served a similar purpose in the overall perception of the soundscape. Following this, the participants were asked to provide descriptive labels for the groups they had formed. The results were analysed using hierarchical agglomerative clustering and non-metric multidimensional scaling (MDS) to explore both the structure and dimensionality of the data. The resulting hierarchical clustering of objects show three top level categories relating to transient sounds, continuous sounds, and speech and vocalisations. Sub-categories were identified in each of the top level categories which included harmonic and non-harmonic continuous sounds, clear speech, unintelligible speech, vocalisations, transient sounds that indicate actions, and non-salient transient sounds. The first two dimensions revealed by the MDS analysis relate to temporal extent and intelligibility respectively. Interpretation of the third dimension is less clear, but may be related to harmonic content.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Categorisation is a fundamental cognitive process [1] that plays a central role in everyday behaviour and action, supporting the organisation of knowledge (i.e. through the development of taxonomies) and permitting inductive inference about the world (i.e. through the assumption that members of the same category share similar properties) [2]. The process of categorisation is grounded in perceptual and attentional mechanisms capable of detecting similarities and correspondences in the environment [3].

A category exists when two or more objects are judged to be similar to a category prototype [4] or exemplar [5]. Contemporary theories of categorisation suggest that attentional mechanisms allow the salience of different features to vary as a function of context [6,7]. This suggests that categorisation is contingent on task, context, and by the individual’s intentions, goals, and past experiences [8]. A simple example of this would be the in the comparison of different coloured shapes; when comparing a red triangle and a red circle, shape would be a more salient feature than colour, whereas colour would be a more salient feature than shape when comparing a red triangle and a blue triangle.

The aim of this study is to investigate the categorisation of everyday sounds within the context of urban soundscapes.

Research into the perception of complex scenes has traditionally focussed on the visual domain [see, for example, [9,10]]. Recently there has been a growing interest in the perception of complex auditory scenes, particularly in the formation and perception of auditory objects [11,12]. Enquiry into the perception of auditory objects has incorporated behavioural [13], psycholinguistic [14], and neurophysiological [15] approaches. From a neurobiological standpoint, an auditory object is “...the computational result of the auditory system's capacity to detect, extract, segregate and group spectro-temporal regularities in the acoustic environment [11]**. A similar definition is offered by Gestalt psychology, whereby auditory events (or auditory streams) are formed due to formal similarities in the properties of the acoustic stimulus [16]. In the context of this paper, an auditory object is any sound that is perceived as a single perceptual entity and can include both sound events where the source is clearly identifiable (e.g. a car starting) and sounds where the source isn’t identifiable but is still perceived as a coherent object (e.g. low frequency noise).
Studies investigating the categorisation of everyday sounds have generally been conducted using sounds isolated from their original context. Vanderveer [17] found that participants grouped sounds that were either caused by the same event or shared similar acoustical properties. Marcell et al. [18] found 27 categories of environmental sounds that described the sound source (i.e., animal, paper, ground transportation), location (e.g., nature, bathroom, household), and other ad-hoc categories such as game and recreation. Gygi et al. [19] investigated the similarity and categorisation of a broad range of environmental sounds; three distinct categories of sounds were found relating to harmonic sounds, discrete impact sounds, and continuous sounds. Houix et al. [20] found 4 main categories for everyday sounds which included solids, liquids, gases, and machines. In a second experiment focussing on sounds produced by solid objects, Houix et al. [20] found a distinction between discrete and continuous sounds. These studies provide an insight into how listeners categorise individual sounds, however the results should be interpreted with caution when considering the categorisation of sounds within complex sound scenes.

The perception of complex auditory scenes has been explored within the field of soundscape [21], which aims for listener-centric assessments of environmental sound scenes. Work in this area has focussed on perceptual dimensions of listener experience [22–25], emotional dimensions [26], the influence of expectation and contextual factors [27], and ecological validity of artificial reproduction [28,25]. Despite this relatively large body of work, little is known regarding how listeners categorise auditory objects in complex soundscapes. Davies et al. [21] found that the language people use when talking about soundscapes could be grouped into three categories: sound sources (identification of the source), sound descriptors (descriptors related to sound sources), and soundscape descriptors (descriptors related to the totality of what is heard). Guastavino [29] identified two main categories of environmental sounds in complex soundscapes relating to the presence or absence of human activity. In an investigation into the categorisation of complex audio-visual scenes, Rummukainen et al. [30] found a three-dimensional perceptual space was found relating to calmness, openness, and the presence of people. Other perceptual categories that commonly emerge in soundscapes research are “Natural”, “human”, and “mechanical” (see Payne et al. for a review [31]).

Giordano et al. [32] have highlighted the links between the processing of certain categories of environmental sound and language, showing that the evaluation of sounds from living sources is biased towards sound independent semantic information whereas sounds from non-living sources are biased towards physical properties of the sound. The relationship between environmental sounds and semantic processing mirrors Gaver’s distinction between musical and everyday listening [33,34]. Musical listening occurs when the listener focusses on low level auditory features, whereas in everyday listening the listener uses sound to interpret information about the environment. In the perception of soundscapes, Raimbault [35] identified a “descriptive listening” mode in which listeners identify sources or events and a “holistic hearing” mode in which the listeners processes the soundscape as a whole. Similarly, Maffiole et al. [36] makes the distinction between “event sequences” where listeners distinguish between individual sounds and “amorphous sequences” where individual sounds are not distinguished. Categorisation systems have been found to differ between “expert” and “non-expert” listeners [37,38] and according to the emotional response to the sound [39]. This suggests that listening mode influences categorisation. It may be expected that by placing listeners in a situation where they are asked to categorise individual sounds that have been isolated from their original context, the listener will be in a musical listening mode according to Gaver’s distinction.

Considering the literature reported in this section, it is evident that the strategies used by listeners to form different categories of sound are reliant on context, the scale at which attention is focused, and listening mode. It is therefore possible that listeners’ categorisation of everyday sounds will change when the sounds are presented within their original context, compared to when the sounds are presented in isolation. At present, there have been no studies investigating the categorisation of everyday sounds within their original context. This means that it is currently not clear if the findings of previous categorisation studies are applicable in real world contexts. The study reported in this paper investigates the perception and categorisation of environmental sounds within complex auditory scenes. The study aims to address the question of how auditory objects are cognitively structured within complex urban soundscapes, and is a further analysis of the data reported in [40].

2. Methods and materials

2.1. Ethics statement

The experiments described in this paper were approved by the University of Salford ethics committee. Participants took part in the experiments voluntarily, and written consent was taken prior to the test session. Participants were told that they were free to withdraw from the experiment at any time, without needing to give a reason to the researcher.

2.2. Participants

Eighteen participants took part in the experiment, 8 of whom had formal training in acoustics or practical experience in audio engineering, and 10 of whom had no training in acoustics or practical experience in audio engineering. All participants reported having normal hearing.

2.3. Stimuli

Audio recordings of urban soundscapes were made in eight locations on a single day in the city centre of Manchester, UK. The locations were an urban park, a junction on a busy street in the city centre, a market in a busy area and a quiet area, a inside a busy shop, inside a quiet shop, inside a large museum, inside a bar, and inside a busy cafeteria. The locations were selected to provide a variety of different soundscapes, and many of the locations corresponded with locations used in previous soundscape research [21,27]. A map of the locations of the recordings is shown in Fig. 1. The recordings were made using a Soundfield microphone to allow first order ambisonic reproduction. Guastavino et al. [28] and Davies et al. [25] have shown that first order ambisonic reproduction in laboratory conditions elicits a similar listener response to in-situ observations.

The duration of each of the clips was 75 s. For each of the clips, the first author of the present paper identified all of the auditory objects that were audible. This list of objects was subsequently verified and amended by 4 additional listeners, all of whom had training in audio and acoustics. In total, 110 objects were identified across all of the clips. The objects identified in each of the clips are shown in Table 1. It can be seen from this table that the objects included in the test include living and non-living sounds as well as action and non-action sounds.

It can be noted that the sounds identified in Table 1 include both sound events and objects where the source hasn’t been identified. Dubois et al. [14] suggest that sounds are processed primarily as meaningful events, and where source identification fails
sounds are processed in a more abstract manner according to physical or low level perceptual parameters. This suggests that the including a mixture of sound events and other sounds described in terms of acoustical properties could bias participants’ categorisation strategies. However, the results presented in Section 3.1 show no evidence of such a bias in the identified top level clusters.

Table 1

Auditory objects identified in each of the sound clips.

<table>
<thead>
<tr>
<th>Clip 1</th>
<th>Clip 2</th>
<th>Clip 3</th>
<th>Clip 4</th>
<th>Clip 5</th>
<th>Clip 6</th>
<th>Clip 7</th>
<th>Clip 8</th>
<th>Clip 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low frequency noise</td>
<td>Hum of traffic</td>
<td>Distant traffic noise</td>
<td>Distant traffic noise</td>
<td>Store music</td>
<td>Unintelligible voices</td>
<td>Music</td>
<td>Air conditioning sound</td>
<td>Unintelligible voices</td>
</tr>
<tr>
<td>Birdsong</td>
<td>Footsteps</td>
<td>Clattering pushchairs</td>
<td>Unintelligible voices</td>
<td>Laughter</td>
<td>Till drawer closing</td>
<td>Rustling</td>
<td>Muffled announcer voice</td>
<td>Unintelligible voices</td>
</tr>
<tr>
<td>Hum of traffic</td>
<td>Clock tower bells</td>
<td></td>
<td></td>
<td></td>
<td>Male shop assistant voice</td>
<td>Creak</td>
<td>Plate impact</td>
<td>Plate clanking</td>
</tr>
<tr>
<td>Clinking of coins in</td>
<td>High Frequency braking sound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cutlery rattling</td>
<td>Shuffling footsteps</td>
<td>Metalic impact</td>
</tr>
<tr>
<td>parking meter</td>
<td>Alarm sound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clicking sound</td>
<td>Dishwasher drawer opening</td>
<td></td>
</tr>
<tr>
<td>Brushing sound</td>
<td>Bus hissing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voice</td>
<td>Vehicle accelerating</td>
<td>Jangling coins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car starting</td>
<td>Chunk of manhole cover</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siren</td>
<td>Voices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car accelerating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vehicle braking sound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Footsteps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vehicle sound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Map of the soundscape recording locations.
5.0 using the Soundfield Surround Zone VST plugin.

RME UFX soundcard. The B-format recordings were decoded to

...was equal (85 dBA) for each loudspeaker. The programme material

...was reproduced from 24-bit wav files sampled at 48 kHz via an

...RME UFX soundcard. The B-format recordings were decoded to

5.0 using the Soundfield Surround Zone VST plugin.

2.5. Procedure

Participants were provided with a set of cards, on each of which

...was printed the name of a single sound that occurred in one of the

...the cards. The cards were also printed with the time of the first occur-

...rence of the sound and the clip in which the sound occurred. A test

...interface developed in Pure Data and presented via a laptop com-

...puter allowed the participants to freely switch between the nine clips,

...and to rewind, fast-forward, and pause the clips. In order to hear all of the sounds in the sorting task participants were required

...to listen to the clips in their entirety at least once, and they were free to listen to each of the clips as many times as they wished.

Participants were given the following instruction:

"Please sort the cards into groups such that the sounds in each
group serve a similar function or purpose in the composition of
the scene."

The participants were told that they could form as many groups
as they wished, and that the relative positions of the groups on the

...table was unimportant. They were asked to use all of the cards on

...the table such that the sorting task was conducted for all of the

...sounds in all of the clips. Once the participant had completed their

grouping, they were asked to provide a descriptive label for each of

...the groups they had formed. The label for each group was written

...on an envelope, one envelope per category, which was used to

...store the cards from each of the groups the participant had formed.

In general, it took participants around half an hour to complete the
task. Most participants adopted the strategy of starting to

...forming groups during the first clip they listened to; sounds from

...subsequent clips were added to these groups as they occurred or

...new groups were created as needed.

2.6. Analysis

Data from the sorting task were subject to agglomerative hier-

...archical cluster analysis according to the Ward method [42]. This

...analysis was conducted on an $M \times N$ matrix [where M is the num-

...ber of objects (110) and N is the total number of categories (93)]

...that contained a 1 when an object was included in a certain cate-

...gory and a 0 otherwise. This resulted in hierarchical dendrograms

...that show the clustering of the individual auditory objects.

To aid the interpretation of the clusters of objects, the number of
times a descriptive category label associated with a given object

...occurred in each cluster was calculated (these will be reported in tables). Additionally, the category labels that were unique to each

...cluster were identified (these will be reported in the text of the results section).

Additionally, for each participant an $M \times M$ co-occurrence

...matrix was generated that contained a 1 if a pair of objects were
grouped in the same category and a 0 otherwise. These matrices

...were averaged across the participant group resulting in a similarity

...matrix. This similarity matrix was subject to non-metric multi-
dimensional scaling [43].

3. Results

3.1. Clustering of objects

The median number of groups formed by participants was 5,

...with the minimum being 2 and the maximum being 10.

The dendrogram in Fig. 2 shows the results of the hierarchical

...agglomerative clustering analysis described in Section 2.6. The
dendrogram shows 3 top level categories, which are indicated by

...the dashed rectangles. From top to bottom of the figure, the first of

...the three top level categories is related to human vocalisations.

...In total, there are 48 category labels associated with the objects in

...this cluster, 5 of which are unique to the cluster. The unique labels

...associated with this category are “Intelligible voices”, “Human

...voice”, “Sounds by humans”, “Speech by humans”, “Background

...sounds - Human undistinguishable voices”. The 10 most frequently

...used category labels associated with the objects in this cluster are

...shown in Table 2.

The second top level category is related to background sounds

...with a long temporal extent, and includes traffic, air conditioning

...sounds, and music. In total, there are 60 category labels associated

...with the objects in this cluster, 11 of which are unique to the cluster.

...The unique labels associated with this category include “Nat-

...ure background noise”, “Background sounds - Harmonic sounds”,

...“Sounds by alive creatures i.e. animals”, “Background noise (urban)”,

...“Background sound which indicate the scene”, “Music in vicinity”, “Useful sounds - Music related”, “Music”, “Ambient

...music/playback of recorded music”, “Music (non-artificially added)”, and “Key information”. The 10 most frequently used cat-

gory labels associated with the objects in this cluster are shown in

Table 2.

The third top level category is related to transient sounds. In
total there are 70 category labels associated with the objects in this

...cluster, 4 of which are unique to the cluster. The unique labels

...associated with this category include “Vehicle sounds”, “Move-

...ment speeding up”, “Useful sounds - Traffic Movement slowing
down”. The 10 most frequently used category labels associated

...with the objects in this cluster are shown in Table 2.

3.2. Multidimensional scaling

Using the method described in Section 2.6 a 110×110 similarity

...matrix was built. This matrix was subject to non-metric multi-
dimensional scaling (MDS), which allows the visualisation of the

...similarity matrix in a low dimensional space. The dimensions that

...result from a multidimensional scaling analysis of a similarity

...matrix are generally interpreted as being orthogonal perceptual
dimensions [44]. The main aim of multidimensional scaling is to
determine a configuration of a group of objects in an R-
dimensional multidimensional space to provide a visible represent-
tation of pairwise distances or (dis) similarities between objects in

...the group. By studying the configuration of points in this multi-
dimensional configuration it is possible to identify the perceptual
attributes that underlie the group of objects, each of the R dimen-
sions being orthogonal and therefore representative of a salient
perceptual attribute underlying the group of objects represented
in the space.

To determine an optimum dimensionality of the scaling, solu-
tions were calculated in 2–9 dimensions and the non-metric stress
was inspected. A three dimensional solution resulted in a non-
Fig. 2. Dendrogram showing hierarchical agglomerative clustering of auditory objects.
metric stress of 0.11, which suggests a fair fit with the original data [45]. Figs. 3 and 4 show the three dimensional solution. For readability, a random sample of 1/3 of the auditory objects are shown in these figures. The full configurations are available from http://dx.doi.org/10.17866/rd.salford.3497936.

4. Discussion

The aim of the work presented in this paper is to investigate the categorisation of everyday sounds within complex auditory scenes, namely urban soundscapes. Participants were asked to sort objects within complex soundscapes according to their function in the scene. Cluster analysis revealed a hierarchical structure with a top layer consisting of three main categories. These categories related to human vocalisation, background sounds with a long temporal extent, and transient sounds. This top level categorisation supports the findings of Houix et al. [20], who found a clear distinction between continuous and discrete sounds and Gygi et al. [19] who identified categories relating to continuous, discrete, and harmonic sounds as well as vocalisations. This partitioning is also supported by the work of Giordano et al. [32], which revealed differences in the way the brain processes living and non-living sounds. Similar results have also been found in studies into the categorisation of complex urban soundscapes such as the distinction found by Maffiolo et al. [36] between “event sequences” where listeners distinguish between individual sounds and “amorphous sequences” where individual sounds are not distinguished. These findings suggest that many of the categorisation frameworks found in previous studies into the categorisation of isolated everyday sounds may be extended to the categorisation of auditory objects within urban soundscapes.

4.1. Sub-categories in the clustering top level clusters

Examining the dendrogram in Fig. 2, there are a number of clear sub-categories within each of the three top level clusters. In the category containing speech and vocalisations, there are three main categories. These categories related to human vocalisation, background sounds with a long temporal extent, and transient sounds. This top level categorisation supports the findings of Houix et al. [20], who found a clear distinction between continuous and discrete sounds and Gygi et al. [19] who identified categories relating to continuous, discrete, and harmonic sounds as well as vocalisations. This partitioning is also supported by the work of Giordano et al. [32], which revealed differences in the way the brain processes living and non-living sounds. Similar results have also been found in studies into the categorisation of complex urban soundscapes such as the distinction found by Maffiolo et al. [36] between “event sequences” where listeners distinguish between individual sounds and “amorphous sequences” where individual sounds are not distinguished. These findings suggest that many of the categorisation frameworks found in previous studies into the categorisation of isolated everyday sounds may be extended to the categorisation of auditory objects within urban soundscapes.

Table 2

<table>
<thead>
<tr>
<th>Category 1</th>
<th>Category 2</th>
<th>Category 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human noises ($N = 28$)</td>
<td>Background sound ($N = 13$)</td>
<td>Individually recognisable noises ($N = 62$)</td>
</tr>
<tr>
<td>Presence of people ($N = 27$)</td>
<td>Setting/environment ($N = 13$)</td>
<td>Sounds resulted from human activities ($N = 53$)</td>
</tr>
<tr>
<td>Vocal (like) ($N = 25$)</td>
<td>Background (instruments) ($N = 12$)</td>
<td>Background ($N = 48$)</td>
</tr>
<tr>
<td>People around ($N = 25$)</td>
<td>Where are we? ($N = 10$)</td>
<td>General background ($N = 45$)</td>
</tr>
<tr>
<td>Sounds by humans ($N = 24$)</td>
<td>Background ($N = 9$)</td>
<td>Non dominant event sound ($N = 43$)</td>
</tr>
<tr>
<td>Secondary ($N = 21$)</td>
<td>Scene defining, Large temporal extent ($N = 8$)</td>
<td>Where are we? ($N = 42$)</td>
</tr>
<tr>
<td>Information ($N = 21$)</td>
<td>General background ($N = 8$)</td>
<td>Object sounds ($N = 41$)</td>
</tr>
<tr>
<td>Human sounds ($N = 20$)</td>
<td>Background traffic, voices, etc. not distinguishable, give an idea about location ($N = 8$)</td>
<td>Single event sounds ($N = 41$)</td>
</tr>
<tr>
<td>Soft ($N = 20$)</td>
<td>Background sound which indicate the scene ($N = 8$)</td>
<td>Tonal. Musique concrete ($N = 39$)</td>
</tr>
<tr>
<td>Where are we? ($N = 19$)</td>
<td>Background noise (urban) ($N = 8$)</td>
<td>Noise ($N = 36$)</td>
</tr>
</tbody>
</table>

Fig. 3. Dimensions I and II of the MDS analysis of the similarity matrix.
In the category of continuous sounds there are two clear sub-categories. The first of these clusters is related to sounds with harmonic content, and includes sounds such as “birdsong” and “music”. The second of the sub-clusters is related to sounds dominated by noise, and includes sounds such as “hum of traffic” and “air conditioning”. This partitioning into harmonic and non-harmonic sounds was also observed by Gygi et al. [19].

In the category of transient sounds there are two clear clusters. There is a significant degree of overlap in the category descriptions provided by participants for the objects in these clusters, however the sub-clusters appear to relate to: (1) objects which are salient to the scene, clearly indicating actions and movements, such as footsteps and vehicle sounds and (2) lower level transient events such as rustling and scraping sounds. The distinction between salient and non-salient sounds is supported by evidence that action sounds are processed differently by the brain than non-action sounds [46] and by the findings of Houix et al. [20] who found sub-categories relating to the physical actions that produced the sound.

4.2. Interpretation of perceptual space

Fig. 3 shows the first 2 dimensions of the MDS solution described in Section 3.2. The 3 top level categories revealed through the hierarchical cluster analysis can be clearly identified in the MDS solution. The ordering of the top level categories along Dimension I show a progression from speech and vocalisations to continuous sounds to transient sounds. The ordering of the top level categories along Dimension II shows a progression from a mixture of speech and transient sounds to continuous sounds. Fig. 4 shows Dimension III of the MDS analysis of the similarity matrix; there is no clear separation of the 3 top level categories along this dimension.

The ordering of sounds along Dimension I shows that this dimension clearly separates the 3 top level categories. The order of progression of the categories along this dimension suggests that the dimension is related to the temporal extent of the sounds, with speech sounds and continuous sounds concentrated at the lower end of the dimension and transient sounds concentrated at the upper end.

The ordering of sounds along Dimension II shows that the 3 top level categories are spread and mixed along this dimension; however, this dimension separates a number of the sub-categories that were identified within the top level categories (see Section 4.1). The category of transient sounds are arranged on Dimension II such that the sounds within this category progress from sounds indicating movements and actions (i.e. footsteps) to less salient transient sounds (i.e. rustling paper). The category of speech sounds are ordered along Dimension II such that they progress from intelligible speech (i.e male voice) to unintelligible speech (i.e unintelligible voices). The category of continuous sounds are not spread along this dimension, and occupy a narrow range at one extreme of Dimension II. Taken together, this ordering of sounds on Dimension II suggest that this perceptual dimension broadly relates to intelligibility or readability, with sounds that contribute to the understanding of the action within the scene occurring at one extreme of the dimension and sounds which don’t occurring at the other extreme.

The interpretation of Dimension III is less clear than Dimensions I and II; however, the positioning of sounds along categories of continuous sounds and transient sounds can be seen to be spread along Dimension III. The spread of continuous sounds along this dimension relates to the sub-clustering of this top level category into harmonic and non-harmonic sounds however this ordering isn’t evident in the ordering of transient sounds along this dimension.

4.3. Comparison between expert and non-expert listeners

Previous work has indicated differences in the categorisation strategies between expert and non-expert listeners. In this work, participants who stated that they had practical experience in audio engineering were classified as expert listeners. To investigate the
similarity of the clustering solutions between the expert and non-expert listener groups, the Rand Index was calculated between the two solutions [47]. The Rand Index is a measure of the similarity between two clustering solutions which takes into account false positives, true positive, false negatives, and true negatives. The Rand index between the clustering of objects for expert and non-expert listeners was 78%, indicating that there is a high degree of similarity in the clustering solutions obtained for the expert and non-expert listeners. The similarity in structure between the clustering solutions for the expert and non-expert listeners can be seen in the supporting figures http://dx.doi.org/10.17866/rd.salford.3497936. Table 3 shows the percentage of objects common to each of the three top level categories between the expert and non-expert listener groups. Differences in categorisation between the two groups included:

- The non-expert group included 3 of the unintelligible voice objects in the category of continuous sounds, whereas these objects are in the category of speech and vocalisations in the expert group's configuration.

Table 3

Percentage of objects common to each of the 3 top level categories between the expert and non-expert group.

<table>
<thead>
<tr>
<th>Category</th>
<th>Continuous sounds (%)</th>
<th>Transient sounds (%)</th>
<th>Speech and vocalisations (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous sounds</td>
<td>86</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Transient sounds</td>
<td>17</td>
<td>83</td>
<td>0</td>
</tr>
<tr>
<td>Speech and vocalisations</td>
<td>8</td>
<td>20</td>
<td>72</td>
</tr>
</tbody>
</table>

- The non-expert group categorised the sub-category of vehicle sounds in the top level category of continuous sounds, whereas the expert listener groups categorised these objects in the top level category of transient sounds.
- The non-expert group categorised footstep objects in the top level category of transient sounds, whereas the expert listener group categorised these objects in the top level category that included speech and vocalisations.

Tables 4 and 5 show the 10 most frequently used category labels for the three top level categories for the expert and non-expert listener groups respectively. As with the clustering solutions, the descriptive labels applied by the expert and non-expert listener groups are similar. This similarity in language coupled with the high percentages of common objects between the top level categories suggest that the expert and non-expert listener groups adopted similar categorisation strategies.

5. Conclusions

This paper has presented an experiment to investigate the cognitive categorisation of sounds within the context of complex urban soundscapes. Eighteen participants, comprising expert and non-expert listeners, completed a free sorting task in which they were asked to sort a set of sounds occurring in ambisonic reproductions of complex urban soundscapes into groups of sounds that served a purpose in the overall perception of the soundscape. Three top level categories were revealed through hierarchical cluster analysis relating to transient sounds, continuous sounds, and speech and vocalisations. The top level clusters were found to contain a number of clear sub-clusters relating to harmonic and non-

Table 4

10 most frequently used category labels for the three top level categories for the expert listener group. N is the number of times each label was associated with the category.

<table>
<thead>
<tr>
<th>Category 1</th>
<th>Category 2</th>
<th>Category 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Human sounds (N = 25)</td>
<td>Background sound (N = 21)</td>
<td>Individually recognisable noises (N = 62)</td>
</tr>
<tr>
<td>2 Human noises (N = 25)</td>
<td>Where are we? (N = 17)</td>
<td>Single event sounds (N = 42)</td>
</tr>
<tr>
<td>3 Vocal (like) (N = 17)</td>
<td>Continuous amorphous background (N = 14)</td>
<td>Object sounds (N = 41)</td>
</tr>
<tr>
<td>4 Dominant and meaningful event sound (N = 17)</td>
<td>Background filler/bed (N = 13)</td>
<td>Where are we? (N = 39)</td>
</tr>
<tr>
<td>5 Useful sounds - Human voices, laughters, announcements, footsteps (N = 16)</td>
<td>Human noises (N = 9)</td>
<td>Tonal. Musique concrete (N = 39)</td>
</tr>
<tr>
<td>6 Human generated sounds/noises/vocalisations. Singluar (N = 16)</td>
<td>Vocal (like) (N = 9)</td>
<td>Non dominant event sound (N = 39)</td>
</tr>
<tr>
<td>7 Where are we? (N = 15)</td>
<td>Background sounds - Human undistinguished voices (N = 8)</td>
<td>Low level event sounds (N = 32)</td>
</tr>
<tr>
<td>8 What is happening? (N = 10)</td>
<td>Human generated sounds/noises/vocalisations. Group (N = 8)</td>
<td>Not significant sounds - Artificial noise (N = 31)</td>
</tr>
<tr>
<td>9 Intelligible voices (N = 10)</td>
<td>Music (N = 7)</td>
<td>High level foreground event sounds (N = 27)</td>
</tr>
<tr>
<td>10 Not significant sounds - Human realted (N = 10)</td>
<td>Scene defining. Large temporal extent (N = 7)</td>
<td>What is happening? (N = 23)</td>
</tr>
</tbody>
</table>

Table 5

10 most frequently used category labels for the three top level categories for the non-expert listener group. N is the number of times each label was associated with the category.

<table>
<thead>
<tr>
<th>Category 1</th>
<th>Category 2</th>
<th>Category 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 People around (N = 21)</td>
<td>Noise (N = 19)</td>
<td>Sounds resulted from humans activities (N = 53)</td>
</tr>
<tr>
<td>2 Soft (N = 20)</td>
<td>Background traffic, voices, etc. not distinguishable give an idea about location (N = 18)</td>
<td>Background (N = 48)</td>
</tr>
<tr>
<td>3 Presence of people (N = 20)</td>
<td>Background (instruments) (N = 16)</td>
<td>General background (N = 42)</td>
</tr>
<tr>
<td>4 Secondary (N = 20)</td>
<td>Background (N = 16)</td>
<td>Noise (N = 30)</td>
</tr>
<tr>
<td>5 Information (N = 19)</td>
<td>Setting/environment (N = 15)</td>
<td>Background traffic, voices, etc. not distinguishable give an idea about location (N = 29)</td>
</tr>
<tr>
<td>6 Sounds by humans (N = 17)</td>
<td>Background (N = 14)</td>
<td>Background (instruments) (N = 27)</td>
</tr>
<tr>
<td>7 Clearer sounds can be identified (N = 12)</td>
<td>Observed events (N = 12)</td>
<td>Quieter sounds (N = 25)</td>
</tr>
<tr>
<td>8 Human voice (N = 11)</td>
<td>General background (N = 11)</td>
<td>Secondary (N = 25)</td>
</tr>
<tr>
<td>9 Background (N = 10)</td>
<td>Clearer sounds can be identified (N = 11)</td>
<td>Background (N = 23)</td>
</tr>
<tr>
<td>10 Observed events (N = 9)</td>
<td>Sounds by other objects (N = 11)</td>
<td>Louder sounds (N = 22)</td>
</tr>
</tbody>
</table>
harmonic continuous sounds, clear speech, unintelligible speech, vocalisations, transient sounds that indicate actions, and non-salient transient sounds. Similar categorisation strategies were observed between the expert and non-expert listener groups. Non-metric multidimensional scaling revealed a 3 dimensional perceptual space. The first two dimensions of this space related to temporal extent and intelligibility respectively; however, interpretation of the third dimension was less clear. These results provide an insight into the cognitive categorisation of individual sounds within the context of complex soundscapes. The results suggest that previous studies into the categorisation of isolated everyday sounds may be extended to the categorisation of auditory objects within urban soundscapes.

Acknowledgement

This work was supported by the EPSRC Programme Grant S3A: Future Spatial Audio for an Immersive Listener Experience at Home (EP/L000539/1) and the BBC as part of the BBC Audio Research Partnership. The author would like to thank the participants of the listening tests for their time.

The experimental data underlying the findings are fully available without restriction, details are available from http://dx.doi.org/10.17866/rd.salford.3497936.

References

[12] Sloutsky VM. The role of similarity in the development of categorization.