Inter country analysis of breast density classification using visual grading.
Analysis of mammographic breast density using visual grading

Damases, C, Hogg, P and McEntee, M
http://dx.doi.org/10.1259/bjr.20170064
Inter country analysis of breast density classification using visual grading

Analysis of mammographic breast density using visual grading
ABSTRACT

Purpose: Disagreement in mammographic breast density (MBD) assessment can impact breast cancer risk stratification, choices of further breast cancer screening intervals and pathways. This study examines whether inter-country MBD expectations and assessment approaches are associated with differences in MBD assessment.

Methods: Twenty American Board of Radiology (ABR) examiners and 24 United Kingdom (UK) practitioners using the 4th edition BI-RADS® lexicon assessed 40 mammogram cases of 20 women. Twenty-six Royal Australian and New Zealand College of Radiologists (RANZCR) registered radiologists also assessed the same cases. Inter-observer correlation and agreement were assessed using a Spearman's correlation (ρ) and weighted Kappa (κ_\text{w}) respectively.

Results: Strong positive correlation was observed between the study cohorts on a binary scale (1–2 vs. 3–4) [ABR examiners and RANZCR radiologists (ρ = 0.950); ABR examiners and UK practitioners (ρ = 0.940); RANZCR radiologists and UK practitioners (ρ = 0.958)]. ABR and RANZCR radiologists demonstrated slight agreement [κ_\text{w} = 0.10; 95% CI = -1.13 - 0.43] while ABR and UK practitioners showed a fair agreement [κ_\text{w} = 0.25; 95% CI = -0.42 - 0.61], and an almost perfect agreement was observed between RANZCR radiologists and UK practitioners [κ_\text{w} = 0.95; 95% CI = 0.91 - 0.97].

Conclusion: Findings demonstrate wide international and inter-observer variability in MBD assessment. This level of variability underscores the need for automation and standardisation of MBD assessment.

Key words: Breast density, inter-observer agreement, visual assessment methods.
Advances in knowledge:

*Inter country analysis of mammographic breast density assessment shows variations, with less variation on binary scale than on 4-point scale.

*With this level of variation automation and standardisation of mammographic breast density assessment becomes more appropriate.
Introduction

Mammographic breast density (MBD) is an indicator of risk of breast cancer, with women reported to have a four- to six-fold increase in breast cancer risk if they have extremely dense breasts, compared to women with predominantly fatty breasts.\(^1\)\(^-\)\(^3\) MBD is defined as the proportion of radio-opaque fibroglandular tissue in the breast as apparent on a mammogram.\(^4\) High MBD is associated with a decrease in the sensitivity of mammography due to the potential masking of a breast cancer in fibroglandular tissue.\(^2\) The potential of cancer being missed in a breast with high MBD leads to adjunctive imaging of women with dense breast using ultrasound, digital breast tomosynthesis (DBT), magnetic resonance imaging (MRI) or more regular recall for mammogram imaging.\(^5\)\(^-\)\(^7\) Therefore, it is important to assess the causal factors contributing to national and international variability in MBD assessment in order to underscore the importance of standardisation of breast density assessment.

Radiologist professional bodies have proposed ways of assessing MBD visually. In the United States of America (USA), the American College of Radiology (ACR) developed the breast imaging reporting and data system (BI-RADS\(^\circ\)) scheme to provide a standardised categorisation system for reporting MBD. The 4\(^{th}\) edition ACR BI-RADS\(^\circ\) scheme classifies breast density into four categories based on the percentage of fibroglandular tissue in the breast.\(^8\) MBD classification descriptors
for BI-RADS® and the Royal Australian and New Zealand College of Radiology (RANZCR) synoptic scales are presented in table 1.

Table 1

The BI-RADS® classification scheme has been modified in the 5th edition, with 1-4 changed to A-D, and breasts having a higher amount of dense tissue behind the nipple rated as C or D to account for the masking effect of MBD.9 To enable women’s contribution to decision-making, regarding screening for early breast cancer detection, 27 states in the USA now have legislations authorising reporting of MBD by radiologists.10 Although there is no such legislation in other countries as yet, many practices now assess and include MBD information in mammography reports.

The Australian and New Zealand College of Radiology also proposed the RANZCR synoptic guidelines to categorise MBD into 4 categories.11 The RANZCR synoptic scale describes the percentage of glandular tissue for each of the 4 categories as shown in table 1. Currently, only two studies have investigated the assessment of MBD using the RANZCR synoptic scales.12,13

Although the BI-RADS® scheme forms the basis for a majority of studies on MBD14,15, it is limited by observer subjectivity and prone to intra and inter-observer variability in MBD rating.15-17 The reported inter and intra-observer variability in MBD assessment using the BI-RADS® system ranged from a Kappa 0.27 to 0.94.16-18 RANZCR breast density assessment is visual and subjective and thus has similar challenges as BI-RADS.12,13 There is a paucity of data on the level of inter-radiologists’ agreement in MBD assessment using the RANZCR synoptic
scale. No data exists for the level of variability in MBD assessment between RANZCR radiologists and breast readers from other parts of the world. Also, no work has assessed how the MBD assessed using BI-RADS® reflects that of the RANZCR synoptic scale. Further work is required to assess how MBD assessment using the RANZCR scale compares with that assessed using the BI-RADS® scale and to investigate whether prevalence expectation impacts observers density assessments.

Even though there is no literature on the impact of density assessment based on the expected density, performance studies have shown that prevalence expectation has an impact on radiologists’ behaviour.19-24 Prevalence expectation is a phenomenon that has been shown to influence the performance of observers in mammography interpretation.19-24 It is referred to as “the relationship between the prevalence of a particular image appearance and observer performance.”24 Considering that prevalence expectation holds true for mammography interpretation, it might influence the categorisation of MBD by observers from different countries. Many mammography image readers don’t perform this task often and this may lead to a reduced reliability and validity of visual determination of breast density. No study has assessed inter country differences in the ability of observers to assign mammography images for breast density into categories; this study attempts to fill that gap.

Therefore, this study aims to assess the level of agreement in MBD assessment between BI-RADS® and RANZCR assessment scales. It does this by comparing MBD assessment of ABR examiners, UK practitioners, and RANZCR registered radiologists. Such international inter-observer comparison may improve
understanding of potential factors associated with variability in MBD assessment.

Methods and materials

Institutional Review Board ethical approval was provided for the study (IRB 2013/448). The study cohorts consisted of USA radiologists, Australian radiologists and UK practitioners (radiographers). All 20 American Board of Radiology (ABR) examiners were Mammography Quality Standards Act (MQSA) certified, the 26 Australian radiologists were RANZCR certified, and 24 UK radiography practitioners were HCPC registered and working at advanced and consultant levels. All participants consented to the study. Flyers and e-mails were used to recruit the study cohorts. The Louisville data was collected from volunteer ABR examining radiologists. Flyers were placed around the hotel, and the proposed studies were announced at the information sessions for the ABR examiners. The Melbourne data were collected from volunteer RANZCR registered radiologists at the RANZCR annual scientific meeting. Flyers were placed around the convention center, and the proposed studies were announced at the information sessions for radiologists. For the Salford data, flyers were posted out to the breast screening centers in the Salford area. Once the lead radiographer granted permission, the flyer was circulated to reporting radiographers in the department. The UK radiography practitioners voluntarily participated in the mammogram reading study. These held a diagnostic radiography entry qualification such as bachelor of science (BSc), an additional mammography imaging qualification such as postgraduate certificate (PGC) and
further specific qualifications in images reading for mammography. These qualifications enable them to perform the same clinical roles as radiologists in full-field digital mammography (FFDM) imaging and to the same standard.25-29 In the UK advanced practice/consultant radiographers perform FFDM reporting in the same way and to the same standard as a radiologist within the National Health Service Breast Screening Program (NHSBSP). Given that radiologist ability to assess density visually has already been determined for radiologists, our study builds on that work by offering insight into a specific group of highly skilled radiographers, as it is possible that their scope could develop to include density scoring. BIRADS lexicon is sometimes used in the UK as a subjective method for MBD assessment. More commonly, a rating of ‘fatty’, ‘mixed’ or ‘dense’ is given. The study cohorts had differing mean years of experience and the average number of mammograms read per year, see table 2.

\textbf{Table 2}

\textit{Image selection and Volpara\textregistereddensityTM Grading}

A FFDM data set, comprised of 40 cases was obtained from 20 normal cases. These were negative for cancer, and had no obvious benign findings. The women were aged 42-89 years. These images were acquired at a single site in New York, USA, under the same protocol on GE Senographe Essential (or DS) (GE Fairfield, CT and Hologic Lorad Selenia (Hologic Bedford MA) imaging systems one year apart. The images were selected to enable a comparison of the Volpara density grades (VDG) for women whose images were produced one year apart and also to have a comparable number of cases for each of the 4 VDG categories. A stratified sample was selected in an attempt to ensure similar numbers in each
density category; with 22.5% images in VDG 1, 32.5% in VDG 2, 20% in VDG 3 and 25% in VDG 4. For each case the images were displayed in the following order: first left craniocaudal (LCC) followed by a left mediolateral oblique (LMLO) and then the combination of LCC and LMLO presented together. To ensure observers could evaluate the images in 15-20 minute time period, only the left breast images were used for this study. Considering that this dataset contained images of the same women taken one year apart and the MBD assessment scores were obtained within a single sitting, the same observer saw both cases from the same women. Although the observers were presented with the images of the same women, these images were not identical. Positioning changes and equipment changes sufficiently changes images such that they did not appear to be of the same woman. Observers also had no reason to suspect that images of the same women would appear twice. Furthermore the ability to remember an image is related to remarkable aspects of the image. Additionally, the trace decay theory of forgetting suggests that short-term memory can only hold information between 15-30 seconds unless it is rehearsed. Therefore, the fact that the observers were presented with the images of the same women taken one year apart within one sitting can not be considered as a confound in this study.

Automated volumetric breast density assessment of these cases was first performed using Volpara®densityTM version 1.4.3 (Mātakina, Wellington, New Zealand) to obtain Volpara Density Grades (VDGs). The preset VDG categories are as follows: VDG 1: <4.5%; VDG 2: 4.5 - 7.5%; VDG 3: 7.6 - 15.5%; VDG 4:
>15.5%. These VDG thresholds are used to represent BI-RADS® and RANZCR 1 – 4 categories respectively.

Image display and MBD quantification using BI-RADS® and RANZCR

Images were displayed on a single EIZO, GS510, five-megapixel display (Tokyo, Japan). This was calibrated to the digital imaging and communications in medicine (DICOM) grayscale standard display function (GSDF) and the user interface was ViewDEX software (Version 2.0).\(^{32}\) The monitor has been shown to demonstrate the required characteristics detailed in the Association of Physicists in Medicine (AAPM) Task Group18 report.\(^{33}\) The observers were able to adjust the window width and level, and also could pan and zoom the images. The reading environment was standardised, with the ambient lighting kept constant between 25 and 35 lux as confirmed by a calibrated photometer (model 07–621, Nuclear Associates).\(^{34}\)

The mammogram cases were randomized using random integer generator\(^{35}\) prior to MBD assessment by ABR examiners, Australian radiologists and UK practitioners, respectively. Twenty ABR examiners and 24 UK practitioners assessed the same images using the BI-RADS® MBD assessment scheme.\(^{8,36}\) The images were also assessed by 26 RANZCR registered radiologists using the RANZCR synoptic scale.\(^{11}\) Since MBD categories 3 and 4 have the potential to conceal small lesions and reduce the sensitivity of mammography respectively, the assessments of observers were then grouped into two categories [low (1&2), and high (3&4)] for both BI-RADS® and RANZCR. This was to assess the level of inter-observer agreement on a binary scale to provide the potential level of variability with regards to screening individualization.
Data analysis

Statistical analyses were performed using the Statistical Package for Social Sciences (SPSS) Version 21.0 (IBM, Chicago, IL, USA). A non-parametric Spearman’s analysis was used to assess the correlation between MBD assessments made using BI-RADS® and RANZCR for all observers (20 ABR examiners, 26 RANZCR registered radiologists, and 24 UK practitioners). A Wilcoxon signed-rank test was also used to compare the median scores of observers. A weighted Kappa (κw) statistic was used to test for the degree of agreement between MBD assessment schemes and pairs of observers. A weighted Kappa was used because it accounts for the level of disagreement between observers. A two-way mixed model, which allows for selection of cases randomly and nesting the computation within observers was used to calculate average absolute agreement for all the study cohorts, respectively. The inter-observer agreement for ABR examiners, RANZCR radiologists, and UK practitioners was assessed separately. MBD assessments of these observers were compared in pairs to assess their inter-reader agreement. For each cohort, the agreement between every possible pair combination of all the observers was performed off-line using a commercial software package MATLAB version 2009 (The MathWorks Inc., Natick, MA, United States) and confusion matrices were formulated. Cohen Kappa algorithm was implemented and a mean Kappa for each reader was computed. Then overall kappa for each cohort was calculated by averaging the means of all the observers in a specific cohort. The level of agreement was examined both on a 4-point (1 - 4) and binary (1&2 vs. 3&4)
classifications scales. Results were considered to be statistically significant at p<0.05.

Results

Classification of images

The VDG classifications were regarded as the ‘truth categories’ for this study. The percentage distribution of cases classified into MBD categories by individual ABR examiners, Australian radiologists, and UK practitioners are shown in figures 1A, 1B and 1C. Each of the observers in the three study cohorts assessed MBD and a majority report was generated from these assessments. The term majority report denotes the consensus of at least 51% of the cohort of the observers. The number of cases assigned to different MBD categories according to the majority reports of observer cohorts is shown in table 3.

Table 3

Figure 1

Comparison of median MBD values between ABR examiners, RANZCR radiologists and UK practitioners BI-RADS scores

For all observers, the median MBD scores obtained using BI-RADS® and RANZCR were 2 and 2 respectively and the median difference between ABR BI-RADS® and RANZCR MBD score was not significant (Z = -0.199; p<0.843). The median MBD scores by ABR examiners and UK practitioners using BI-RADS® were 2 and 2 respectively (Z = -0.788; p<0.431). RANZCR radiologists demonstrated a median MBD score of 2, and this was not statistically significantly different from the median score of the UK practitioners (Z = -1.414; p<0.157).
Correlation between ABR examiners, Australian radiologists and UK practitioners

Spearman’s correlation analysis demonstrated a weakly non-significant negative relationship between the MBD assessment of ABR examiners and RANZCR radiologists on a 4-point scale ($\rho = -0.029; p<0.859$). A strong positive correlation was demonstrated between MBD assessments of ABR examiners and RANZCR radiologists on a binary scale ($\rho = 0.950; p<0.001$).

A weak positive correlation was observed between MBD assessments made by ABR examiners and UK practitioners on a 4-point scale ($\rho = 0.148; p<0.362$). Both groups of observers demonstrated a strong positive correlation on binary scale ($\rho = 0.940; p<0.001$).

The MBD assessed by Australian radiologists showed a strong positive relationship with that of UK practitioners on a 4-point scale ($\rho = 0.916; p<0.001$). A strong positive correlation was also noted on binary scale ($\rho = 0.958; p<0.001$).

Agreement between ABR examiners and RANZCR registered radiologists on same images

All the cohorts of the study were presented with 40 cases. These images had MBD ratings from VolparaTM which were used as the ground truth. Where the majority report of the ABR and RANZCR radiologist concur this is counted as agreement. Overall, the ABR examiners and RANZCR registered radiologists agreed on 12/40 (30%) images. The ABR examiners generally graded cases into a higher MBD category compared to the Australian radiologists. Of the 40 cases in the dataset, four images rated as BI-RADS® 3 by ABR examiners were rated
RANZCR 1 by RANZCR radiologists, 3 images rated BI-RADS® were rated RANZCR 2 (table 4). The overall agreement (κ_w) between BI-RADS® and RANZCR was 0.010 (95% CI = -1.13 – 0.43).

Table 4

Agreement between ABR examiners and UK practitioners

The ABR examiners and UK practitioners agreed on 15/40 (38%) cases. Were the majority report of the ABR radiologist and UK practitioners concur this is counted as agreement. Again, the ABR examiners provided a higher MBD score compared to the UK practitioners. Four cases rated as BI-RADS® 3 by ABR examiners were rated BI-RADS® 1 by UK practitioners (table 5). The overall agreement (κ_w) between ABR examiners and UK practitioners’ BI-RADS® assessment was 0.25 (95% CI = -0.42 – 0.60).

Table 5

Agreement between RANZCR registered radiologists and UK practitioners

RANZCR registered radiologists and UK practitioners agreed on 32/40 (80%) cases. Were the majority report of the RANZCR and UK practitioners concur this is counted as agreement. UK practitioners classified six cases into a higher MBD category than the Australian radiologists. Four of the cases rated RANZCR 1 were rated BI-RADS® 2 by UK practitioners (table 6). The overall agreement between RANZCR and UK practitioners’ BI-RADS® was 0.95 (95% CI = 0.91 – 0.97).

Table 6
Inter-observer agreement for ABR examiners, RANZCR registered radiologists and UK practitioners

Generally, the UK practitioners and RANZCR radiologists tended to call the cases denser than ABR radiologists. Table 7 shows the inter-observer agreement in MBD assessment for each observer cohort. The overall inter-observer agreement among ABR examiners was average \([\kappa_w] = 0.57; 95\% \text{ CI} = 0.52 – 0.61\] on a 4-point BI-RADS® scale, and ranged from a Kappa of 0.33 to 0.67. On a binary scale, the overall inter-observer agreement \([\kappa_w]\) was 0.86; 95% CI = 0.82 – 0.87, and ranged from a Kappa of 0.66 to 0.90 (Fig. 2A & 2B).

Inter-observer agreement using RANZCR four-point scale was 0.36 (95% CI = 0.31–0.41), and ranged from 0.078 to 0.499. RANZCR inter-observer agreement on binary scale was substantial [0.71; 95% CI = 0.66 – 0.77], and ranged from 0.22 to 0.89 (Fig. 2C & 2D).

The inter-observer agreement in MBD assessment amongst UK practitioners was 0.47 (95% CI = 0.43 – 0.50) on a 4-point scale, with Kappa values ranging from 0.24 to 0.58. A substantial inter-observer agreement was observed for UK practitioners on a binary scale [0.78; 95% CI 0.74 – 0.82], and ranged from 0.48 to 0.85 (Fig. 2E & 2F).

Table 7

Figure 2
DISCUSSION

Reproducibility of MBD classification is important given the relevance of MBD information in breast cancer risk assessment and the tailoring of screening methods and frequency. It is important that the same cohort of women imaged under similar conditions have the same opportunity for screening personalisation from MBD assessment. The current work explored the agreement in MBD of the same women assessed using different approaches and by different cohort of observers. Findings demonstrate a wide variability in MBD categorisation between observers, with ABR examiners demonstrating slight agreement with RANZCR radiologists and fair agreement with UK practitioners, and RANZCR radiologists demonstrating almost perfect agreement with UK practitioners. This wide variability was also noted among the same observer cohort, with ABR examiners and UK practitioners each demonstrating moderate inter-observer agreement, and RANZCR radiologists demonstrating fair inter-observer agreement.

The inter-observer agreement among RANZCR radiologists was lower than the ABR examiners and UK practitioners. Factors such as years of experience, number of mammograms read per year, training, and the legislation framework governing reporting of breast density, might affect the classification of MBD by observers from different domains. The effect of legislation on MBD reporting has been demonstrated in a recent study, which showed change in the reporting patterns of radiologists after the implementation of density reporting legislation in the USA. The study showed that 50% of the observer cohort assigned more cases in BI-RADS® 2 than BI-RADS® 3. The remaining observers (44%) had equal
ratings for BI-RADS® 2 and 3 categories.37 It should be noted that MBD legislations aims to facilitate shared decision-making between screened women and their physicians regarding adjunctive screening. Some radiologists grade MBD, taking into consideration age and clinical history of the patient.37 Hence it is logical that these factors may significantly impact upon inter-reader variability in MBD assessment. This finding suggests that MBD classification may be influenced by systems requirement, legislation, and individual perception of the potential impact of breast density. Therefore, further work should investigate whether these factors are associated with the wide international variability in the MBD classification of the same patient cohort observed in the current work.

A recent study reported a 32.4\% disagreement between a pair of radiologists38, and suggested that this level of disagreement limits use of qualitative assessments for recommending additional screening and risk management of women with dense breasts.38 The current study demonstrates a 70\% disagreement between ABR examiners and Australian radiologists, and 62\% disagreement between ABR examiners and UK practitioners. The lowest disagreement was reported between Australian radiologists and UK practitioners (20\%). These levels of disagreement are likely to change or influence the individualised screening of women with dense breasts. The disagreement particularly becomes crucial when it affects the categorisation that differentiates low (1 & 2) from high (3 & 4) MBD categories. This is because it determines the category of women who are likely to be referred for additional imaging with ultrasound or MRI.12,39 Encouragingly, the level of disagreement observed on a binary scale in the current study was less compared to that
observed on a four-point scale. Nevertheless, the level of inter-observer
disagreement on a binary scale was still appreciable, and underscores the need
for standardisation of breast density assessment. This may require the
introduction of automated MBD assessment techniques in all screening
programmes to more appropriately tailor adjunctive imaging and screening
intervals for women with dense breasts.

The current work is based on cases taken from women in USA. The results of the
study suggest that radiologists' perception of MBD may be based on the normal
MBD distribution seen within their local population. This finding is consistent
with previous studies, which reported low inter-observer variability for
American radiologists. However, the question arises whether or not it causes
a difference for a group of observers assessing density of women that they are
not accustomed to. Further work is required to examine whether observer rating
of MBD is influenced by the breast density distribution of a population they are
accustomed to.

Considering that the 4th edition BI-RADS® and RANZCR classify breast density
according to the same percentages (table 1), it is logical that they would
demonstrate a good level of agreement in the same patient cohort. The wide
level of inter-reader and inter-country variability observed in the our study is a
cause for concern, and shows perhaps the lack of understanding of, or adherence
guidelines for MBD assessment. It is unclear whether the negative correlation
observed between ABR and RANZCR radiologists is due to prevalence
expectation, where observers are accustomed to a certain MBD grade. Additional
training for further assessment of performance could be beneficial. Our findings
show how the same women cohort could be classified into different risk strata, and screening regimen and pathways in different countries and among observers, thus limiting consistency in clinical use of MBD.

The BI-RADS® system originated in the USA, and no difference has been shown in the range of inter-observer agreement for studies based in the USA versus outside the USA. However, it is possible that inter-regional or inter-country differences in visual MBD assessment approaches would cause variation in MBD rating of the same woman as demonstrated in the current work. There is evidence that visual assessment of MBD has wide inter-reader disagreement. This variability was observed in previous work with inter-reader agreement (κ) ranging from 0.328 to 0.669 and 0.078 – 0.499 respectively. Given the reported intra and inter-observer variation with other visual assessment methods such as BI-RADS® and RANZCR scales, there is a need to determine the range of agreement that can be expected between countries using the same criteria for MBD assessment. Importantly, the current study has provided insight to the level of variability in MBD assessment between observers from different practices and countries.

The strengths of our study include the large number of observers from different backgrounds. Secondly, this is the first international assessment of inter-observer agreement in MBD assessment using BI-RADS® and RANZCR synoptic scales. Data provided show for the first time how MBD of the same cohort of women can be classified differently by observers from different domains. There were several limitations to the study. Only the left breast was used for BI-RADS® and RANZCR assessment. It is possible that including the right breast may have
affected the results presented in this study. The observers may not have been familiar with the presentation state of the images and may be used to a different look. This may have affected their conclusions on density, Even-though Volpara™ was used as the ‘ground truth’ for all the cohorts of the study, BI-RADS® and RANZCR scales are not designed to be exactly the same as Volpara™. Therefore, the disagreement shown between these scales and Volpara™ might be expected. Furthermore, observers are familiar with using BI-RADS® and RANZCR density assessment scales therefore inter-country differences are also expected. Previous studies found in-country variations between observers.12, 39 Therefore, different observers are likely to see different patient populations even compared to their in-country colleagues as all these assessment methods are using a four point scale. The UK cohort for the current study comprised of radiographers, therefore further work will investigate international inter-observer comparisons for UK radiologists.

\textbf{Conclusion}

Data produced demonstrate wide international and inter-observer disagreement in MBD assessment. In particular, the findings show poor agreement between ABR examiners and RANZCR and UK mammography image readers. The findings also showed moderate inter-observer agreement in MBD assessment among ABR radiologists, fair agreement amongst RANZCR radiologists, and moderate agreement amongst UK practitioners. The findings emphasise the need to improve reproducibility of MBD classification internationally in order to improve risk stratification and more appropriately tailor screening in women with dense breast.
References

42. Antonio ALM, Crespi CM. Predictors of interobserver agreement in breast imaging using the Breast Imaging Reporting and Data System. Breast Cancer Research and Treatment. 2010;120(3):539-46.

Figures:

Figure 1: Percentage distribution of cases assigned into MBD categories by each ABR examiner (A), RANZCR registered Australian radiologists (B), and UK practitioners (C).

Figure 2: Inter-observer agreement for MBD assessment using BI-RADS® and RANZCR scales. (A) Shows the ABR examiners’ agreement on BI-RADS® four-point scale and (B) shows the agreement on BI-RADS® binary scale. (C) Shows the RANZCR radiologists’ agreement on RANZCR four-point scale and (D) Shows the agreement on RANZCR binary scale. (E) Shows the UK practitioners’ agreement on BI-RADS® four-point scale and (F) shows the agreement on BI-RADS® binary scale.