Probing the action of a novel anti-leukaemic drug therapy at the single cell level using modern vibrational spectroscopy techniques

Denbigh, JL, Perez-Guaita, D, Vernooij, RR, Tobin, MJ, Bambery, KR, Xu, Yun, Southam, AD, Khanim, FL, Drayson, MT, Lockyer, NP, Goodacre, R and Wood, BR 2017, 'Probing the action of a novel anti-leukaemic drug therapy at the single cell level using modern vibrational spectroscopy techniques' , Scientific Reports, 7 (1) , p. 2649.

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution 4.0.

Download (4MB) | Preview

Abstract

Acute myeloid leukaemia (AML) is a life threatening cancer for which there is an urgent clinical need for novel therapeutic approaches. A redeployed drug combination of bezafibrate and medroxyprogesterone acetate (BaP) has shown anti-leukaemic activity in vitro and in vivo. Elucidation of the BaP mechanism of action is required in order to understand how to maximise the clinical benefit. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Synchrotron radiation FTIR (S-FTIR) and Raman microspectroscopy are powerful complementary techniques which were employed to probe the biochemical composition of two AML cell lines in the presence and absence of BaP. Analysis was performed on single living cells along with dehydrated and fixed cells to provide a large and detailed data set. A consideration of the main spectral differences in conjunction with multivariate statistical analysis reveals a significant change to the cellular lipid composition with drug treatment; furthermore, this response is not caused by cell apoptosis. No change to the DNA of either cell line was observed suggesting this combination therapy primarily targets lipid biosynthesis or effects bioactive lipids that activate specific signalling pathways.

Item Type: Article
Schools: Schools > School of Environment and Life Sciences > Biomedical Research Centre
Journal or Publication Title: Scientific Reports
Publisher: Nature
ISSN: 2045-2322
Related URLs:
Funders: Biotechnology and Biosciences Sciences Research Council (BBSRC)
Depositing User: JL Denbigh
Date Deposited: 23 Aug 2017 13:39
Last Modified: 23 Aug 2017 14:02
URI: http://usir.salford.ac.uk/id/eprint/43605

Actions (login required)

Edit record (repository staff only) Edit record (repository staff only)

Downloads

Downloads per month over past year