Nitric oxide blocks the development of the human parasite Schistosoma japonicum

http://dx.doi.org/10.1073/pnas.1708578114

<table>
<thead>
<tr>
<th>Title</th>
<th>Nitric oxide blocks the development of the human parasite Schistosoma japonicum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/43777/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2017</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Nitric oxide blocks the development of the human parasite Schistosoma japonicum

Jia Shen, De-Hua Lai, R. Alan Wilson, Yun-Fu Chen, Li-Fu Wang, Zi-Long Yu, Mei-Yu Li, Ping He, Geoff Hide, Xi Sun, Ting-Bao Yang, Zhong-Dao Wu, Francisco J. Ayala, and Zhao-Rong Lue

*Center for Parasitic Organisms, State Key Laboratory of Bioclock, Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China; Departments of Parasitology, Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, People’s Republic of China; Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom; Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, United Kingdom; and Department of Ecology and Evolutionary Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697.

Contributed by Francisco J. Ayala, August 4, 2017 (sent for review May 24, 2017; reviewed by Malcolm K. Jones and Chong-Ti Tang)

Human schistosomiasis, caused by Schistosoma species, is a major public health problem affecting more than 700 million people in 78 countries, with over 40 mammalian host reservoir species complicating the transmission ecosystem. The primary cause of morbidity is considered to be granulomas induced by fertilized eggs of schistosomes in the liver and intestines. Some host species, like rats (Rattus norvegicus), are naturally tolerant to Schistosoma japonicum infection, and do not produce granulomas or pose a threat to transmission, while others, like mice and hamsters, are highly susceptible. The reasons behind these differences are still a mystery. Using inducible nitric oxide synthase knockout (iNOS−/−) Sprague-Dawley rats, we found that inherent high expression levels of iNOS in wild-type (WT) rats play an important role in blocking growth, reproductive organ formation, and egg development in S. japonicum, resulting in production of nonfertilized eggs. Granuloma formation, induced by fertilized eggs in the liver, was considerably exacerbated in the iNOS−/− rats compared with the WT rats. This inhibition by nitric oxide acts by affecting mitochondrial respiration and energy production in the parasite. Our work not only elucidates the innate mechanism that blocks the development and production of fertilized eggs in S. japonicum but also offers insights into a better understanding of host-parasite interactions and drug development strategies against schistosomiasis.

Significance

Viable egg production by Schistosoma species is the key pathogenic process causing granuloma formation in permissive hosts (e.g., mice), while nonpermissive hosts [e.g., Norway rats (Rattus norvegicus)] avoid such sequelae. Using inducible nitric oxide synthase knockout (iNOS−/−) rats, we demonstrate that high expression levels of iNOS in rats play an important role in blocking the egg-induced granuloma formation of Schistosoma japonicum. The nitric oxide, produced by iNOS, inhibits parasite growth, reproductive organ development, egg production, and viability by interfering with mitochondrial function. This study solves the puzzle as to why rats are naturally resistant to S. japonicum infection and provides insights for understanding the pathogenesis of human schistosomiasis and the interactions between host and parasite.

Contributed by Francisco J. Ayala, August 4, 2017 (sent for review May 24, 2017; reviewed by Malcolm K. Jones and Chong-Ti Tang)

Human schistosomiasis, caused by Schistosoma species, is a major public health problem affecting more than 700 million people in 78 countries, with over 40 mammalian host reservoir species complicating the transmission ecosystem. The primary cause of morbidity is considered to be granulomas induced by fertilized eggs of schistosomes in the liver and intestines. Some host species, like rats (Rattus norvegicus), are naturally tolerant to Schistosoma japonicum infection, and do not produce granulomas or pose a threat to transmission, while others, like mice and hamsters, are highly susceptible. The reasons behind these differences are still a mystery. Using inducible nitric oxide synthase knockout (iNOS−/−) Sprague-Dawley rats, we found that inherent high expression levels of iNOS in wild-type (WT) rats play an important role in blocking growth, reproductive organ formation, and egg development in S. japonicum, resulting in production of nonfertilized eggs. Granuloma formation, induced by fertilized eggs in the liver, was considerably exacerbated in the iNOS−/− rats compared with the WT rats. This inhibition by nitric oxide acts by affecting mitochondrial respiration and energy production in the parasite. Our work not only elucidates the innate mechanism that blocks the development and production of fertilized eggs in S. japonicum but also offers insights into a better understanding of host-parasite interactions and drug development strategies against schistosomiasis.

Significance

Viable egg production by Schistosoma species is the key pathogenic process causing granuloma formation in permissive hosts (e.g., mice), while nonpermissive hosts [e.g., Norway rats (Rattus norvegicus)] avoid such sequelae. Using inducible nitric oxide synthase knockout (iNOS−/−) rats, we demonstrate that high expression levels of iNOS in rats play an important role in blocking the egg-induced granuloma formation of Schistosoma japonicum. The nitric oxide, produced by iNOS, inhibits parasite growth, reproductive organ development, egg production, and viability by interfering with mitochondrial function. This study solves the puzzle as to why rats are naturally resistant to S. japonicum infection and provides insights for understanding the pathogenesis of human schistosomiasis and the interactions between host and parasite.
in infected rats (12–14). Endocrine gland removal studies revealed that hormones from the pituitary and thyroid/parathyroid glands were required for innate resistance in rats (15), but no specific hormones were identified due to technical limitations at the time. Nevertheless, none of these proposed mechanisms could definitely and satisfactorily fully explain the resistance.

A comparison between mice and rats has clearly shown that the expression levels of inducible nitric oxide synthase (iNOS or NOS2) and the production of nitric oxide (NO) are barely detectable in naive mice but significantly higher in naive rats (16). This production of NO is typically dependent on L-arginine metabolism by iNOS in activated macrophages and other immuneocytes in response to microbial compounds and/or cytokines (e.g., IFN-γ, IL-1) (17, 18). NO has been identified as participating in macrophage-mediated killing or cytostasis of various extracellular or intracellular parasitic protozoans, such as *Toxoplasma, Leishmania, Plasmodium,* and *Trypanosoma* (17). In fact, some studies on NO have also been carried out on *Schistosoma* in a mouse model. For example, it was reported that macrophage and endothelial cell-mediated cytotoxicity against schistosomula of *S. mansoni* in vitro might be involved in the production of NO (19, 20). In addition, Wynn et al. (21) found that worm burdens were increased when mouse NO synthase activity was inhibited by aminoguanidine, a selective inhibitor of iNOS. Nevertheless, all of these studies were based on mouse models, and the role of NO in rats on infection by *S. japonicum* remains a mystery. We therefore hypothesized that the mechanism of natural resistance/intolerance to *S. japonicum* infection in rats could be related to inherent high expression levels of iNOS.

To test this hypothesis, iNOS knockout (iNOS−/−) Sprague–Dawley (SD) rats were used. We found that inherent high expression levels of iNOS in wild-type (WT) rats play a key role in blocking *S. japonicum* growth, reproductive organ development, egg production, and the ability to lay fertilized eggs. The consequences of this were to limit granuloma formation in the liver. We show that this inhibition by NO acts by affecting mitochondrial respiration and energy production in the worm. These findings not only provide direct evidence to demonstrate that NO is the key factor for natural resistance to *S. japonicum* infection in rats but also provide knowledge for a better understanding of the pathogenesis of schistosomiasis. They also inform potentially novel strategies to design new compounds and drugs to control schistosomiasis.

Results

NO is a Key Molecule in Rats That Hampers the Development of *S. japonicum*. To test the hypothesis that NO plays an important role in the natural resistance/intolerance to *S. japonicum* infection in rats, initial studies were carried out to compare the status of NO production in BALB/c mice and SD and Lewis rats postinfection with *S. japonicum*. As expected, based on previous studies, development and fecundity levels of the parasite, parasite loads, and the size of granulomas in the tested animals were negatively correlated with their capacity to produce NO (Fig. S1), implying the inhibitory effect of NO in *S. japonicum* growth, maturation, fecundity, and pathogenesis.

Furthermore, iNOS−/− SD knockout rats were generated with undetectable NO production in peritoneal macrophages and lower levels of NO in sera (Fig. S2). Following infection, iNOS−/− rats showed a significant increase in worm burden (iNOS−/− rat, 82 ± 4; WT rat, 21 ± 2; *P < 0.001*) and egg deposition in the liver (eggs per gram of liver tissue: iNOS−/− rat, 106,334 ± 19,955; WT rat, 4,903 ± 1,239; *P < 0.001*) (Table 1). Notably, the worm fecundity in the iNOS−/− rats, defined as the average egg production per female, was found to be nearly fivefold higher than that found in WT rats (Table 1).

To better understand the effects on *S. japonicum* in the iNOS−/− rat, detailed biological characteristics of the worms were examined. The lengths and diameters of male and female worms collected from iNOS−/− rats at 7 wk postinfection were significantly greater than those obtained from WT rats (Fig. 1A). The tegument of *S. japonicum* from the infected iNOS−/− rats was covered with well-arranged ridges and abundant pits, as well as sensory papillae with setae, and was similar to that of worms collected from mice (Fig. 1B and Fig. S3). However, in contrast, these characteristics were poorly developed in the worms from WT rats (Fig. 1B and Fig. S3). In addition, a large number of spines and several sensory papillae were found in the tegument of oral suckers of *S. japonicum* from iNOS−/− rats and mice but were not observed in the WT rat group (Fig. 1B).

Most importantly, we also found a huge difference between the reproductive systems of *S. japonicum* collected from iNOS−/− and WT rats. The testes of adult male schistosomes from iNOS−/− rats were composed of six to eight testicular lobes containing large amounts of spermatogonia and spermatocytes, while the seminal vesicle was filled with thousands of mature sperm (Fig. 1C). In the control mice, *S. japonicum* had a similar phenotype as in the iNOS−/− rats. In contrast, in WT rats, *S. japonicum* displayed a significant reduction in the number and size of testicular lobes, accompanied by a remarkable decrease in cell density in the testes plus a lack of mature sperm (Fig. 1C–E). Furthermore, in female worms, drastic differences were observed in the size of ovaries, vitellaria, and numbers of nonexcercited eggs in the uterus of *S. japonicum* collected from the iNOS−/− and WT rats (Fig. 1C, F, and G and Fig. S4). Analogous to the worms observed in mice, we found that the ovaries of mature female worms collected from the iNOS−/− rats were composed of abundant oogonia, immature and primary oocytes (Fig. 1C and F), while the uteri were filled with eggs (Fig. 1G and Fig. S4B) and the vitelline lobes were clustered with closely arranged vitelline cells (Fig. S4I). In contrast, there were significant reductions in the diameters of ovaries that contained only a few oocytes in the female worms collected from the WT rats (Fig. 1C and F). The occurrence of eggs in uteri was rare, and those present were not properly formed; the vitelline lobes had scantily organized vitelline cells (Fig. 1G and Fig. S4). These results obtained from the WT rats are consistent with those previously described (8), but show a clear difference from phenotypes observed in the iNOS−/− rats.

Table 1. Worm and egg burden in WT compared with iNOS−/− SD rats at 7 wk after *S. japonicum* infection

<table>
<thead>
<tr>
<th>Groups</th>
<th>Total</th>
<th>Male worms</th>
<th>Female worms</th>
<th>No. of eggs found in liver, per gram</th>
<th>Eggs per female worm (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>21 ± 1.7</td>
<td>12 ± 1.3</td>
<td>9 ± 0.8</td>
<td>4,903 ± 1,239</td>
<td>509 ± 94 (104–660)</td>
</tr>
<tr>
<td>iNOS−/−</td>
<td>82 ± 4.2***</td>
<td>42 ± 2.5***</td>
<td>40 ± 2.3***</td>
<td>106,334 ± 19,955***</td>
<td>2,922 ± 548*** (1,108–4,924)</td>
</tr>
</tbody>
</table>

WT and iNOS−/− rats were infected percutaneously with 200 cercariae of *S. japonicum*. Worm and egg burdens were determined at 7 wk postinfection. Data are expressed as the mean ± SEM (n = 10). Significant differences in characteristics were noted between WT and iNOS−/− rats. **P < 0.01; ***P < 0.001.

1The female worm numbers also indicate the numbers of pairs, as they were always found in pairs.
S. japonicum Produced Viable Eggs in the Infected iNOS−/− Rats. To investigate the hypothesis that S. japonicum should produce nonfertilized eggs and underdeveloped embryos in the WT rats, acridine orange fluorescence staining was used as a detection system to measure viable egg production. We found a lower percentage (21.05%) of live eggs of S. japonicum from the WT rats, compared with a much higher percentage (86.28%) of viable eggs from the iNOS−/− rats (Fig. 2A; P < 0.001). Furthermore, results from the circumoval precipitation reaction (CPR), a specific indicator of the secretion activity of viable mature eggs, showed that a characteristic and dense reaction product surrounded 29.58% of 2,000 eggs collected from the iNOS−/− rats, while only weak CPR activity was observed in 5.42% of 1,200 eggs collected from the WT rats (Fig. 2B). Moreover, we found that much more severe pulmonary granulomas were induced by eggs collected from the livers of iNOS−/− rats than those from the WT rats, when injected i.v. into naïve mice (Fig. 2C and D).

To test the developmental status of S. japonicum eggs from the infected iNOS−/− and WT rats, a hatching test was carried out. Parasite eggs recovered from the iNOS−/− rats were capable of hatching to miracidia (25.3%) in a similar proportion to those recovered from mice (Fig. 2E). However, in contrast to the results from the iNOS−/− rats, eggs collected from the WT rats were unable to hatch, thus demonstrating that NO has a specific role in affecting egg viability.

Exacerbated Granuloma Formation in the iNOS−/− Rats Was Attributed Only to the Full Development of Parasites, Not to Other Host Factors. It is well known that viable eggs of schistosomes are a key factor for the formation of granulomas in their hosts (22). Indeed, as we predicted, rare and small granulomas were found in the liver of WT rats infected with S. japonicum at 7 and 12 wk postinfection, while both the number and size of granulomas were dramatically increased in the infected iNOS−/− rats (Fig. 3A–C). The size of hepatic granulomas in iNOS−/− rats infected with S. japonicum was 20.97 ± 1.87 (×103 μm3) at 7 wk postinfection, nearly eightfold larger than those found in the infected WT rats [2.56 ± 0.42 (×103 μm3); P < 0.001]. In a follow-up at 12 wk postinfection, the size of hepatic granulomas, remarkably, increased to 201.18 ± 25.91 (×103 μm3) in iNOS−/− rats infected with S. japonicum, over 22-fold larger than those found in the infected WT rats [8.79 ± 0.85 (×103 μm3); P < 0.001; Fig. 3B]. Furthermore, comparison of the granuloma density of iNOS−/− and WT rats showed an increase of 30-fold and 20-fold, respectively, in liver tissue in the knockout rats at 7 wk (WT: 0.09 ± 0.01%; iNOS−/−: 2.73 ± 0.19%; P < 0.001) and 12 wk (WT: 0.43 ± 0.14%; iNOS−/−: 8.84 ± 0.40%; P < 0.001) postinfection (Fig. 3C). The marked increase in hepatic granulomatous inflammation in the infected iNOS−/− rats was largely dependent on the increased egg production of S. japonicum and maturation of eggs (Table 1 and Fig. 2B).
rats after injection of eggs obtained from rabbits infected with S. japonicum. To our surprise, similar sizes and volume density of pulmonary granulomas were observed in both the WT and iNOS−/− rats after injection of the same dose of viable mature eggs (Fig. S5). Thus, our results clearly demonstrated that the exacerbation of hepatic granulomas in the iNOS−/− rats was not attributed to host factors, but to the viability of Schistosoma eggs.

Adoptive Transfer of WT Macrophages into the iNOS−/− Rats Could Partially Restore the Inhibition Against S. japonicum. To provide further evidence of the role of NO on the inhibition of development of S. japonicum, adoptive transfer of WT rat macrophages (Mφ) into iNOS−/− rats was performed. Macrophages were used as they are considered to be the best-characterized source of NO (18). After transfer, the iNOS−/− recipient rats (iNOS−/− + Mφ) that received adoptive transfer of WT macrophages were able to express iNOS (Fig. S6 A and B) and elevated the production of NO in vivo (Fig. S6 C). As seen in Table S1, in contrast to the status in the iNOS−/− rats, the worm burden and egg production, together with worm fecundity, were significantly reduced in the recipient group of animals (iNOS−/− + Mφ). Furthermore, we found that the adoptively transferred macrophages could partially inhibit the parasite growth, which resulted in a decrease in length and diameter (Fig. S6 D–F). As a consequence, the size of granulomas in livers displayed a marked reduction in the iNOS−/− + Mφ group (Fig. S6 G and H). Thus, these data further demonstrated that NO is a key factor involved in blocking the development of S. japonicum in rats.

NO Inhibits the Mitochondrial Respiration of S. japonicum. In this study, we speculated that the mechanisms of NO blocking the development of Schistosoma might be linked to the inhibition of mitochondrial respiration, resulting in inhibition of mitochondrial energy production and lethal metabolic interference. To test this hypothesis, the mitochondrial morphology and structure of S. japonicum were compared. Ultrastructural observations revealed that worms from the mice had typical eukaryotic mitochondria with well-defined outer membranes and a clear cristae structure. In contrast, clusters of damaged mitochondria exhibiting mitochondrial swelling and distortion, loss of intact internal membranes, and disruption of mitochondrial cristae with vacuolization were observed in worms from the WT rats. However, mitochondrial alterations were considerably diminished in the worms from the iNOS−/− rats (Fig. 4 A and Fig. S7). In addition, the relative mRNA expression of the mitochondrial respiratory chain enzymes, cytochrome c oxidase (CcO, complex IV) subunit I and NADH dehydrogenase (complex I), in worms from the WT rats was significantly decreased (Fig. S8). CcO activity was also significantly decreased in worms from the WT rats, compared with those from the iNOS−/− rats and mice (Fig. 4G). These results strongly suggest that the mechanisms of NO blocking the development of S. japonicum in rats act by affecting mitochondrial respiration in the parasite.

Discussion

Understanding defense mechanisms against parasites is a key aspect of elucidating host–parasite interactions. S. japonicum is a zoonotic parasite with a naturally wide permissive host range; however, some hosts, including the brown rat, are nonpermissive hosts. This provides a good model system for investigating the host–parasite interactions that control and limit infection. In permissive hosts, such as mice and hamsters, the parasites are able to reach sexual maturation and deposit eggs, which then trigger the formation of granulomas that are ultimately responsible for mortality. However, in nonpermissive hosts, such as rats, the parasites struggle to survive and do not fully develop into mature stages (7, 8, 15). Scientists have long been puzzled by these biological differences among mammalian species, and the causative mechanism(s) remained unclear; many hypotheses have been proposed to account for this (6, 12, 14).

In early studies based on the mouse model, evidence indicated the effect of NO on killing Schistosoma (17), but the mechanism was not clarified. Based on our results from the rat models (WT vs. iNOS−/− and adoptive transfer of macrophages), we have demonstrated that high expression of iNOS with a higher amount of NO in rats is strongly linked to the inhibition of development of S. japonicum, and is a key factor contributing to their resistance against the parasite. The huge differences in development of S. japonicum between the WT and iNOS−/− rats clearly showed that NO could significantly influence the tegument structures, body size, and development of the reproductive organs in S. japonicum. The tegument is known to be required as essential protection for parasite survival during host immune attacks (23) and as a key structure for driving nutrient absorption and cholesterol metabolism (24, 25). The modified structure of the tegument of S. japonicum in WT rats causes significant problems for the absorption of nutrients and the development of the parasite. Importantly, we found that the reproductive organs of the female worms were not properly formed in the infected WT rats, represented as significant decreases in the size of ovaries and the number of vitelline cells and nonexcreted eggs compared with those found in iNOS−/− rats and mice groups. These deformities

![Fig. 3. Egg-induced granulomatous inflammation in livers and lungs in WT and iNOS−/− rats. (A) Representative H&E staining images of hepatic granulomas at 7 wk and 12 wk postinfection with 200 S. japonicum cercariae. (Scale bars: 100 μm.) Arrows identify egg-induced granulomas. (B) Size range of liver granulomas (WT groups, n = 49 and n = 69; iNOS−/− groups, n = 138 and n = 90). (C) Granuloma volume density in liver tissue. Granulomas were measured in tissue section (>8.2 mm3) in five individual rats per group. The data are expressed as the mean ± SEM. ***P < 0.001. Data are representative of three independent experiments.](Image 0x1 to 19x816)

![Fig. 4. Mitochondrial respiration was inhibited in worms collected from WT rats. S. japonicum was harvested from infected animals at 7 wk postinfection. (A) Ultrastructural analysis of mitochondria in worms. Arrows indicate mitochondria. (Scale bars: 200 nm.) (B) Respiratory chain enzyme CcO activity from isolated mitochondria of adult worms. The data are expressed as the mean ± SEM. ***P < 0.001. Data are representative of three independent experiments.](Image 39x608 to 283x730)
led to a significant decrease in both egg production and deposition in the tissues of the host. This, in turn, alleviated the pathogenesis caused by egg deposition. In fact, early evidence obtained from the mouse model system indicated similar effects of NO on S. mansoni when NO production was elevated by chemical compounds (26) or vaccination (27). Interestingly, the inhibition of development and fecundity by NO was also found in Coopleria oncosphora, a parasitic nematode in cattle, in which elevated expression of iNOS was observed in acquired resistance during reinfection of this parasite (28). Perhaps this represents a generic effect of NO in helminths. Alongside effects in females, we also found that NO could cause notable reductions in testicular lobe formation (both in size and quantity) and lack of production of mature sperm in the males of S. japonicum. In WT rats, the most significant effect of NO on the inhibition of S. japonicum was the production of nonfertilized eggs. This was manifested as a significant decrease in the proportion of viable eggs, showing a weak CPR and inability to lead to hatching of the important miracidial stages that are required for transmission to new hosts. Interestingly, removal of the pituitary gland and thyroid/parathyroid glands from rats before infection with S. mansoni resulted in increasing worm burdens, worm development, oviposition, and miracidial development (15). Indeed, growth hormone and thyroid hormones have been demonstrated to directly induce iNOS expression and increase iNOS activity by influencing the maturation and function of immune cells, such as macrophages (29–33). These results strongly support the important role of NO in the development of Schistosoma.

Egg granuloma formation in the liver and intestinal tissues of many permissive mammalian hosts, such as mice, has long been considered to be the primary cause of morbidity of schistosomiasis (34). This is reported to be caused by antigens secreted by the mature viable eggs (22), followed by induction of inflammatory cells surrounding the eggs (34). In fact, rare egg granulomas have also reportedly been found in nonpermissive hosts (7, 8). In our work, we found that S. japonicum worms developing in WT rats laid 20-fold fewer eggs than those developing in the iNOS−/− rats. Surprisingly, the magnitude of change in egg granuloma production (volume density) between WT and iNOS−/− rats was more than 30-fold. This clearly indicated that the viability of eggs contributed to the difference observed. This result is consistent with our previous work, in which viable eggs of schistosomes are able to induce granuloma formation in their hosts (22). However, it was still unclear in previous studies why such obvious differences occur between permissive and nonpermissive hosts during infection with S. japonicum. This was largely attributed to host specificity, although detailed mechanisms were not then forthcoming.

There was some evidence suggesting that NO could play a direct role in limiting granulomatous inflammation in iNOS−/− mice infected with S. mansoni (35) and in the in vitro granuloma reaction with the iNOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) (36). However, this inhibition effect was not observed when aminoguanidine was administered to mice infected with S. mansoni (37), and it was not observed when the inhibitors 1-N6-(uninocetil)-lysine and L-NAME were used in a model where hepatic granulomas were induced by implanting S. japonicum eggs (38); however, the toxicity of these inhibitors to the parasites had not been clarified. In our study, we were able to exclude the effect of host immunity factors, post-NO deficiency, on egg granuloma formation and attribute it solely to the quantity and viability of parasite eggs. This was confirmed by observing a similar volume density and size of pulmonary granulomas formed in both the WT and iNOS−/− rats following injection with the same dose of viable mature eggs.

NO is an unusual effector molecule because of its ability to diffuse freely across cell membranes. This allows it to diffuse into the worm (39) and to directly influence its physiology (e.g., toxic peroxynitrite anion) (17, 40) or to indirectly (e.g., via S-nitrosylation) target inactivation and degradation of iron-containing enzymes (17, 40, 41), which were essential for parasite metabolism (42, 43). For example, earlier studies suggested that NO/nitrite could mediate in vitro schistosomula killing by causing mitochondrial lesions and inhibition of mitochondrial respiration (19, 44). In fact, mitochondrial metabolism, especially the tri-carboxylic acid cycle, has been shown to have an essential function in S. japonicum (45). This was demonstrated by using fluorocacetate, an inhibitor of acacetate, and showing that it could cause a separation and hepatic shift of paired worms; a significant fall in both glycogen and protein content; and consequently, a considerable loss of worm body weight. Other studies demonstrated that the mitochondrial respiratory chain also plays an important role in egg production (45) and biosynthetic processes in Schistosoma (46), which are important in rebuilding the surface membrane complex to protect schistosomes from immune attack (23, 46). In addition to the detailed knowledge in Schistosoma, mitochondrial respiration is known to be required for development in other parasitic nematodes (47), suggesting a general role in helminth survival and transmission. Our data clearly show damaged mitochondria in the surviving S. japonicum worms collected from infected WT rats, while observing typical normal mitochondrial structures in the worms collected from the iNOS−/− rats infected with the same parasite. Respiration chain impairment was confirmed by significant decreases in expression levels of complexes I and IV (CCo) and CCo activity, which usually is responsible for 90% of oxygen consumption (48, 49). A large number of pioneering studies have documented that NO can inhibit CCo in competition with oxygen (48, 50, 51). Such suppression of CCo activity is reversible (48, 52). In fact, a parasite transfer study that was carried out in rats showed results consistent with this notion of reversible inhibition of the development and fecundity of Schistosoma (7). By analysis of the function of mitochondrial of S. japonicum collected from the WT and iNOS−/− rats, our results strongly suggest that the mechanisms of NO blocking of the development of S. japonicum in rats act by affecting the mitochondrial respiration.

Taken together, our results demonstrate unequivocally that the key role of NO in blocking the development of S. japonicum may be strongly linked to the inhibition of parasite mitochondrial respiration, which, in turn, leads to decreases in worm survival, egg production, and quantity of fertilized eggs. This consequently limits granuloma formation in the liver and subsequent pathogenesis. By studying the reproductive biology of schistosomes in this way, our results not only solve the long-term puzzle as to why rats are naturally resistant/intolerant to S. japonicum infection but also offer insights into possible control. The knowledge that the interaction and evolution of host and parasite are functionally driven by host NO production suggests new strategies for the design of new compounds and drugs for the control and prevention of human schistosomiasis. We also propose that this iNOS−/− rat model will be a highly beneficial and generic model for determining the role of NO in resistance/intolerance to other pathogen infections.

Materials and Methods

Animals. Six- to eight-week-old male Bagg albino (BALB/c) mice and SD rats were purchased from the Laboratory Animal Center of Sun Yat-Sen University. Six- to eight-week-old male Lewis rats were purchased from Vital River Laboratories. The iNOS-deficient rats were generated by transcription activator-like effector nucleases (TALENs) technology and breeding at the specific-pathogen-free (SPF) house of Sun Yat-Sen University. The mutant rats are viable and fertile, and do not display any obvious appearance or physical abnormalities. All animals were housed under specific pathogen-free conditions, and this work was approved by the Laboratory Animal Care Committee of Sun Yat-Sen University under license no. 2012CB53000.

Parasite infection. Cercariae of S. japonicum (Chinese mainland strain) were obtained from infected Oncomelania hupensis snails purchased from the
We thank the members of our laboratories, who provided great help during the work. This work was supported by the National Key R&D Program of China (2016YFC1200200) and National Science Foundation of China (Grants 31472058, 31402029, 31672276, and 81572041).

ACKNOWLEDGMENTS. We thank the members of our laboratories, who provided great help during the work. This work was supported by the National Key R&D Program of China (2016YFC1200200) and National Science Foundation of China (Grants 31472058, 31402029, 31672276, and 81572041).