Mapping stream flow changes and its implications on irrigation infrastructure in agrarian communities of Nigeria
Goyol, S, Pathirage, C and Kulatunga, U

<table>
<thead>
<tr>
<th>Title</th>
<th>Mapping stream flow changes and its implications on irrigation infrastructure in agrarian communities of Nigeria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Goyol, S, Pathirage, C and Kulatunga, U</td>
</tr>
<tr>
<td>Type</td>
<td>Conference or Workshop Item</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/43974/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2017</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
STREAM FLOW CHANGES AND ITS IMPLICATIONS ON IRRIGATION INFRASTRUCTURE IN AGRARIAN COMMUNITIES OF NIGERIA

BACKGROUND

- Climate change, a global environmental challenge is altering the climate system, and a threat to socio-economic development.
- Changes in average weather conditions, alongside unpredictable temperature and rainfall patterns resulting to floods and droughts on two different ends of an extreme.
- These changes are increasingly affecting the availability of water for irrigation purposes and having impacts on irrigation infrastructure.
- This can have future implications on agricultural production, food security and poverty levels if left unchecked.

AIM AND OBJECTIVES

The aim of this study is to assess the impacts of streamflow changes on irrigation infrastructures.

The Objectives are:

- Assess stream flow changes and its impacts on irrigation infrastructures
- Map out how different types of irrigation infrastructures respond to changes in stream flow.

METHODOLOGY

<table>
<thead>
<tr>
<th>Philosophy</th>
<th>Pragmatism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach</td>
<td>Abduction</td>
</tr>
<tr>
<td>Mixed Method</td>
<td>Qualitative & Quantitative</td>
</tr>
<tr>
<td>Case Study</td>
<td>Multiple (3) Case Studies</td>
</tr>
<tr>
<td>Collections</td>
<td>229 Questionnaires</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>Themes Statistics</td>
</tr>
</tbody>
</table>

The three (3) case study communities are Riyom, Mangu and Shendam LGAs (refer to fig 3).

CASE STUDY COMMUNITIES

- Types of irrigation infrastructure available in each case study were identified (refer to fig 4).
- An assessment of the stream flow during both the dry and rainy season was carried out to understand the pattern of stream discharge. (refer to fig 5 & 6).
- Irrigation infrastructures sensitive to stream flow changes in each case study community are presented (refer to fig 7).

REFERENCES

RESULTS AND CONCLUSION

Erratic and heavier rains are increasing stream flows in rainy seasons affecting irrigation infrastructures (earth dams and wash bores) in flood prone areas, while drier periods and water shortages are causing decreased stream flows in the dry seasons thereby affecting the yield of irrigation infrastructures (boreholes, wells) due to lower water levels.

The three (3) case study communities are Riyom, Mangu and Shendam LGAs (refer to fig 3).

Fig 1: STREAM FLOW CHANGES

Fig 2: METHODOLOGY

Fig 3: CASE STUDY AREA

Fig 4: WATER FOR IRRIGATION

Fig 5: CHANGE IN STREAM FLOW AND LEVEL OF IMPACT

Fig 6: STREAM FLOW CHANGES

LEGEND

Earth Dam
Wash Bore
Bore Hole