Non-reciprocity compensation combined with turbo codes for secret key generation in vehicular ad hoc social IoT networks

http://dx.doi.org/10.1109/JIOT.2017.2764384

<table>
<thead>
<tr>
<th>Title</th>
<th>Non-reciprocity compensation combined with turbo codes for secret key generation in vehicular ad hoc social IoT networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/44433/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2017</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Nonreciprocity Compensation Combined With Turbo Codes for Secret Key Generation in Vehicular Ad Hoc Social IoT Networks

Gregory Epiphaniou, Member, IEEE, Petros Karadimas, Member, IEEE, Dhouha Kbaier Ben Ismail, Haider Al-Khateeb, Ali Dehghantanha, Senior Member, IEEE, and Kim-Kwang Raymond Choo, Senior Member, IEEE

Abstract—The physical attributes of the dynamic vehicle-to-vehicle propagation channel can be utilized for the generation of highly random and symmetric cryptographic keys. However, in a physical-layer key agreement scheme, nonreciprocity due to inherent channel noise and hardware impairments can propagate bit disagreements. This has to be addressed prior to the symmetric key generation which is inherently important in Social Internet of Things networks, including in adversarial settings (e.g., battlefields). In this paper, we parametrically incorporate temporal variability attributes, such as 3-D scattering and scatters' mobility. Accordingly, this is the first work to incorporate such features into the key generation process by combining nonreciprocity compensation with turbo codes (TCs). Preliminary results indicate a significant improvement when using TCs in bit mismatch rate and key generation rate in comparison to sample indexing techniques.

Index Terms—Internet of Battlefield Things, Internet of Military Things, key generation rate (KGR), secret bit extraction, Social Internet of Things (SIoT) networks, turbo codes (TCs).

I. INTRODUCTION

CONVENTIONAL cryptographic solutions in wireless communications generate shared secrets using precomputational techniques or asymmetric cryptographic protocols [1]. However, the challenges of generating such secret keys are compounded due to other competing requirements such as energy efficiency, and the need to minimize computational complexity and processing-communication overhead, particularly in autonomous communication of Internet of Things (IoT) nodes and Social IoT (SIoT) networks [2]. In recent literature, there have been efforts to extend data sharing for different types of traffic in vehicle-to-vehicle (V2V) communications, in both civilian and military context (e.g., Internet of Military Things and Internet of Battlefield Things) [3].

Human social network infrastructures and subscription services are now available to sensors, where the establishment and exploitation of social relationships among them is completely transparent to the users or their owners [4], [5]. This necessitates the redesign of existing data networks, based on a new network paradigm to maximize security and reliability. However, these are challenging issues due to vehicle mobility in vehicular ad hoc networks (VANETs). Unsurprisingly, smart vehicles are the objects of SIoT interactions building relationships to enhance the driving knowledge and provide a wider range of the services to the drivers.

Existing cryptographic solutions are designed independently to the physical properties of the network in which they are applied. This has initiated research activities in the area of fast and efficient key generation algorithms based on physical layer characteristics, such as those based on broad received signal strength (RSS) and frequency selectivity [6]–[8]. In these approaches, the wireless channel acts as a medium to increase key generation rate (KGR), cryptanalysis resilience, and quality of keys generated between end points due to the inherent stochastic nature of wireless propagation channels [9]. In addition, the ability to generate cryptographic keys using these approaches removes the reliance on higher-layer encryption protocols. These “channel-based key” extraction approaches seek to exploit the physical properties of wireless channels, such as reciprocity and temporal/spatial variability, in an attempt to provide the necessary randomness for symmetric key generation [8], [10].

In a typical VANET environment, the wireless links between nodes and co-existent adversaries experience uncorrelated channel attributes. Therefore, these channels can offer a certain degree of confidentiality during the key generation process.
between parties. Thus, this reduces computational complexity and eases key management. Secret key information is usually generated from one or more channel characteristics as part of the signal quantization phase. However, the process to determine appropriate channel metrics to characterize a unique wireless channel still remains a challenging and complex domain of scientific inquiry [11], [12]. A tradeoff also exists between quantization performance and selection of thresholds with a direct impact (positive or negative) to the KGR. The unification of the shared secret key must also adhere to error correction principles and valid processes around privacy enhancement techniques in order to minimize information leakage during message exchanges. This process assures symmetric operation between peers and confidentiality by minimizing information exchange during the process of correcting bit mismatch between transceivers. This is especially important in IoT networks, due to the autonomous nature of the nodes exchanging private information.

This paper is the first attempt in the literature to incorporate all essential V2V communication characteristics, such as 3-D multipath propagation and surrounding scatterers’ mobility (i.e., other vehicles), in the key generation process. Our key generation technique can be used to establish secure communication channels within ad hoc social vehicular networks. We employ the comprehensive parametric stochastic V2V channel model presented in [13] to synthetically generate the receiver’s channel response (Bob’s channel), where the transmitter’s response arises after applying the nonreciprocity compensation technique presented in [14]. After the necessary thresholding is used to allocate bits according to designated signal levels, we apply turbo coding (TC) techniques for information reconciliation. At the time of this research, this is the first application of TC techniques in such a setting (V2V channels with parametric 3-D multipath propagation and scatterers’ mobility). We report significant improvement in certain key performance indicators, in comparison to existing standard indexing technique described in [15]. To ensure a fair comparison, the particular indexing technique was again applied in conjunction with the nonreciprocity compensation technique in [14]. More specifically, the KGR and bit mismatch rate (BMR) are significantly improved when combining both nonreciprocity compensation and TCs in this paper.

The rest of this paper is structured as follows. Section II reviews existing works in secret key extraction focusing on error reconciliation techniques. In Section III, we briefly present the performance metrics employed in similar works. In Section IV, we present the adopted key generation process by applying TCs and nonreciprocity compensation in V2V communication channels incorporating 3-D multipath propagation and scatterers’ mobility. A comparative summary is also presented. Finally, Section V concludes this paper.

II. RELATED WORKS

In VANETs (see Fig. 1), nodes are distributed and self-organized with the majority of wireless communication carried out by on-board units integrated with additional services and processes running [16]. High mobility of these nodes and propagation mechanisms of vehicular channels render these environments susceptible to faster fading, multipath delay, path loss, and increased Doppler frequency shift. These unique temporal and spatial properties can generate significant randomness in secret-bit extraction and key distribution because channel responses are reciprocal between two end points. Also, the prediction of randomness in these dynamic environments is more difficult than static ones due to the high entropy bits extracted in shorter time [17]. Different approaches have been published in secure key extraction protocols with different strengths and limitations with regards to entropy, secret bit extraction rate, KGR, number of nodes and threat models. For an exhaustive comparison of these protocols, readers are encouraged to see work in [18].

A. Challenges in Secret Key Generation

The secret key information is usually generated from one or more channel characteristics as part of the signal quantization phase, including fluctuations of signal amplitudes and channel phase [12], [19], [20]. A tradeoff exists between quantization performance and selection of thresholds with a direct impact (positive or negative) to the KGR, entropy, and BMR. These metrics can be affected by the time difference between channel estimates at Alice and Bob, channel decorrelation in time (channel coherence time), inherent communication noise and hardware impairments [21]. The unification of the shared secret key must also adhere to error correction principles and valid processes around privacy enhancement techniques in order to minimize information leakage during message exchanges. Specifically in V2V communications very high temporal variability takes place due to mobility of transmitter, receiver, and surrounding scatterers [13], [22], [23]. Though disadvantageous for communication purposes, such temporal variability can be readily exploited in the key generation process. Signal strength variations due to dynamically changing environments have been leveraged in secret key extraction in [24] and [25]. Authors have demonstrated certain degree of entropy in the key generation and exchange process under the assumption that an adversary has unbounded capacity to estimate RSS values of the packets transmitted. Ali et al. [26] introduced a filtering technique promised to maintain entropy...
and improve signal correlation between communication parties by restricting bit generation only for the period of time that high motion-related fluctuation is present. Movement characteristics and their influence in RSS variation have also been exploited for key generation in [21] and [27]. The correlation between the probing rate and KGR was observed in [28].

Authors introduced an adaptive probing scheme that dynamically changes the probing rate subject to channel-related parameters.

B. Secure Key Generation Strategies

Shehadeh et al. [29] positively correlated entropy of secret bits as a function of mobility with high secret-bit extraction rate. A single channel observation can lead to lower average number of secret bits generated whereas Wilson et al. [12] modeled the upper bound of the average secret key extraction rate as a function of the signal bandwidth. Most of the approaches rely on the assumptions that Eve cannot jam the communication channel and is not close to either Alice or Bob.

Additional challenges have been recorded when RSS is used as a metric to be quantized [14]. Typical thresholds selected usually do not account for points in between them thus reducing the overall key quality or information available for the key generation process. In addition, RSS is usually extracted by a single frequency resulting in low bit generation rates.

On the other hand, channel-phased quantization presents several benefits as higher level of secrecy can be achieved by the uniform distribution of the phases on the channel taps and increase KGR by leveraging the whole channel impulse response (CIR) [18]. It is also noticed that a higher number of secret bits can be extracted that removes the need to estimate RSS over a certain time window. RSS-based approaches though do not require significant hardware modifications with better overall performance in respect to synchronization errors.

The CIR can be described as follows [9]:

\[
h(t) = \sum_{i=0}^{L-1} h_i \delta(t - t_i) \tag{1}
\]

where \(\delta(\cdot)\) is the impulse delta function, \(L\) is the number of channel paths, \(h_i\) is the \(i\)th path complex gain, and \(t_i\) is the delay of the signal on the \(i\)th path in the multipath channel. The multipath fading channel properties in frequency domain have also been investigated in the literature as an alternative way to achieve high entropy and KGR. Channel state information extracted from OFDM subcarriers has been also introduced in an attempt to reduce random noise and improve overall KGR [14]. Multiple thresholds are also used to further quantize these average values of channel response to generate a binary sequence. That bit sequence is then normalized through error reconciliation techniques to assure symmetric and identical bits within the key space. Although this approach is generic, applies more on static nodes and does not depend on mobility aspects making it suitable for wireless sensor networks. A further challenge would be the violation of orthogonality due to Doppler effect inherent in VANETs [30].

Liu et al. [14] argued that channel state information extracted within the coherence time of the channel could be nonreciprocal due to different electrical properties of wireless devices including antenna systems and RF front circuitry. This unavoidably prevents the extraction of symmetric cryptographic keys with low-BMR. However, the channel response in different subcarriers should be different due to diversified frequencies. The location and time in which channel response measurements were taken for a specific subcarrier also differ which can be argued as a factor increasing key randomness. Wilhelm et al. [31] added that channel information at the receiver can be modeled as a location-dependent variable with enough information entropy to be utilized in key generation. However, if channel response is measured in a short period of time highly correlated estimates are generated in both transmitters. A channel gain complement (CGC) algorithm was introduced in an attempt to reduce the disparity of channel responses [14]. The nonreciprocity components were identified with the use of probe packets for each subcarrier. Authors have recorded high BMR when channel state information is quantized in the time domain compared to the frequency domain.

The randomness of signal envelope to share the secret key between two parties has also been examined where deep fades have been used to extract correlated bit strings based on a theoretical analysis and simulation results only [21], [32]. Multiple antenna diversity has also been investigated for secret key extraction with limitations in the KGR [33]. Mathur et al. [21] have argued that the signal envelope can provide (to a pair of transceivers) enough entropy required to extract a cryptographic key for data exchange without the necessity to experience identical signal envelopes between transceivers. Although focus on deep fades can partially overcome interference problems, however, the quality of the symmetric key and the KGR is low. Authors also limit their discussion on the secure ways that key verification information can be exchanged. They also hold assumptions that the size of the bit streams between the two transceivers are the same although calculated by different random sources. Also, work in [32] proved to be computationally expensive when it comes to key recovery phase that render the algorithm difficult to be implemented in V2V communications. Their fuzzy information reconciliation algorithm seems to remove these constraints but the outcome is reduced entropy in the overall quality of the key produced. Information reconciliation is the process of correcting mismatch bits of the quantization phase by publicly exchanging information to be used for corrective actions [34].

Quantization and thresholding are the most important processes in the key establishment process as they provide initial information based on channel characteristics. Also, these processes directly affect the bit mismatch probability due to nonfully reciprocal but highly correlated channel responses of Alice and Bob as a result of inherent communication noise and transceivers hardware impairments. The number of thresholds selected during quantization also presents a tradeoff between KGR and random noise. Additional issues with fixed and multiple thresholds were also reported such as susceptibility to active attacks and discard of sampled values between thresholds, respectively [9]. Protection against active attacks has been partially addressed in [6] with an adaptive secret...
bit generation scheme. In this approach, sampled values were divided into blocks and each block has been independently quantized using its own thresholds based on its average and standard deviation. Although this paper seem to improve overall key generation does not account for imperfect channel reciprocity.

Specifically in V2V communications very high temporal variability takes place due to the mobility of transmitter, receiver and surrounding scatterers. Though disadvantageous for communication purposes, such temporal variability can be readily exploited in the key generation process. Two different techniques have been introduced in [35], namely least square thresholding and neural network-based error reconciliation. Authors recorded an improvement in the detection of fades with smaller depth in environments with no deep fades (e.g., line-of-sight situations). The latter technique uses two similar bit strings to generate keys of arbitrary length known to both Alice and Bob. The security of this system is based on the assumption that Eve cannot adequately reverse the training process of the neural network. A low-cost approach with regards to channel sampling effort was introduced in [28]. The authors modeled mathematically an adaptive channel probing approach based on Lempel–Zin and proportional-integral-derivative controller. Adaptation of the probing rate showed improvements in both KGR and efficiency of the probing process.

C. Privacy Amplification

The last step in the key generation process assumes that the information extraction about the shared key used should be computationally expensive to adversaries (privacy amplification). Most existing approaches focus on different threat models and assumptions around level of access to the channel. “Trapdoor” functions are used as a mean to assure certain level of authentication and integrity in this process [36]. These functions are also used as a mean to deduce the size of the final key and amplify any errors if hashing a reasonable copy of the key is attempted, to a degree that even an exhaustive search of the key space would be infeasible. This process is also used to account for any information exposed during error reconciliation phase and ensure that eavesdroppers do not gain significant advantage to the point where they are able to reconstruct a significant part of the key. In the next, we present an overview of the most important error correction codes that can be potentially used in the information reconciliation stage.

D. Error Correction Codes

Error reconciliation is the next step in the secret key generation process to correct miss-matched information due to imperfect reciprocity and random noise in the channel. Several error reconciliation algorithms have been introduced with different tradeoffs between communication and computational complexity and throughput error correction capabilities (e.g., Cascade and Winnow). The Cascade error reconciliation protocol assumes that two legitimate parties agree on a random permutation over a public channel [37]. This random permutation takes place over their shifted keys in an attempt to evenly distribute errors. Their shifted keys are then divided in blocks where each block does not present more than one error based on the error rate calculated [38].

Linear error correction codes known as Hamming codes have been also introduced in [39]. In order for a sender to transmit a message with a Hamming code the dot product of a generator matrix and the message must be calculated (code word). The code word is then transmitted at the receiver who computes the product of the code word and the parity check matrix (syndrome). If the calculated syndrome at the receiver is a zero vector, the message was received without any errors. In Winnow protocol [40], the operation is much similar with Cascade. The protocol also suggests privacy maintenance throughout the whole reconciliation phase as a mean to protect information exposed during parity and syndrome exchanges.

Low density parity codes (LDPCs) are known for the low density of their parity check matrices which linearly increases the complexity of the decoding algorithm as the length of the message increases [41]. In LDPC codes, the minimum distance (as in Hamming codes) and the decoding algorithm used are considered essential parameters to their performance. In their original form LDPC codes have fixed number of 1s in each column \(k \) and each row \(j \) along with the block \(n \), known as \((n, j, k)\) low density code. The original algorithm developed by Gallager [41] to generate those LDPC matrices was deemed insufficient for large key spaces and limited to work only with regular codes (codes with fixed number of 1s in both columns and rows). LDPC can be more efficient than Cascade as they can become rate adaptive leading to more efficient interactive reconciliation protocols [42], [43].

The invention of TCs [44] was a revival for the channel coding research community. Historical TCs, also sometimes called parallel concatenated convolutional codes, are based on a parallel concatenation of two recursive systematic convolutional codes separated by an interleaver. They are called “turbo” in reference to the analogy of their decoding principle with the turbo principle of a turbo compressed engine, which reuses the exhaust gas in order to improve efficiency.

The turbo decoding principle calls for an iterative algorithm involving two component decoders exchanging information in order to improve the error correction performance with the decoding iterations. This iterative decoding principle was soon applied to other concatenations of codes separated by interleavers, such as serial concatenated convolutional codes [45], [46], sometimes called serial TCs, or concatenation of block codes, also named block TCs [47], [48]. The near-capacity performance of TCs and their suitability for practical implementation explain their adoption in various communication standards. Nguyen et al. [49] proposed utilizing TCs for reconciliation purposes. Further investigation in [50] shows that TCs are good candidates for reconciliation. The efficacy of TCs with regards to their error correction capabilities in various wireless communication standards is also recorded in [51]. Further work in [23] demonstrates the improved performance of TCs over Reed Solomon and CCs which are the de-facto error correction codes used in 802.11p vehicular networks. However, this paper does not comprehensively incorporate physical propagation characteristics such as...
III. PERFORMANCE METRICS

As VANETs are inherently rapidly time-varying due to multipath propagation, this paper parametrically models and quantifies such temporal variability attributes and incorporates them into the key generation process. In addition, violation of reciprocity due to hardware impairments or other penalty factors will be compensated in the architectural design and implementation. The proposed algorithmic process will have to compensate for penalty factors influencing the coherence region. The necessity for this paper stems from the research effort to further reduce BMR while maintaining high KGR in practical VANET environments where mobility of the nodes and large network scale imposes unique security challenges. Three performance indicators, namely entropy, secret bit extraction rate, and BMR, are discussed. The later determines the rate at which the V2V channel is probed in order to secure highly uncorrelated successive samples. We thus present in the following the probing rate together with the three performance indicators.

A. Probing Rate

The probing rate for both Alice and Bob $f_P = \frac{f_P}{2}$ is considered the same for the purpose of channel estimates collection. To achieve uncorrelated successive channel probes, thus achieving highest entropy, successive probes have to be taken in different coherence regions. Thus, we must define $F_P \leq v_{\text{max}}$, where v_{max} is the maximum Doppler frequency shift [13]. Considering single bounce of multipath power onto mobile scatterers (e.g., other vehicles), it is defined as [13]

$$v_{\text{max}} = \frac{f_c}{c} (u_T \text{max} + u_R \text{max} + 2 u_S \text{max})$$

where f_c is the carrier frequency, c the speed of light in free space, and $u_T \text{max}, u_R \text{max},$ and $u_S \text{max}$ the maximum velocities of transmitter, receiver, and mobile scatterers, respectively. In order to maximize the bit extraction rate, we should investigate the feasibility of defining F_P as equal to v_{max}.

B. Entropy Measures

The de-facto metric which quantifies the uncertainty is the entropy of the generated bit string. The higher the entropy the limited the ability to deduce a secret key established by Eve due to larger uncertainty introduced. Entropy per bit i is defined as [9]

$$H_i = -p_0 \log_2 p_0 - (1 - p_0) \log_2 (1 - p_0)$$

where p_0 the probability of having zero and $1 - p_0 = p_1$ the probability of having one. Ideally, we should have $p_0 = p_1 = 0.5$. For independent bit sequences, the total entropy is $H_{\text{total}} = \sum_{i=1}^{N} H_i$, where N is the total number of bits in a sequence [52]. In an ideal case, $H_{\text{total}} = N$ bits.

C. Secret Bit Extraction Rate

The rate is measured in terms of the final secret-bits extracted after error reconciliation and privacy amplification. In practice, the secret bit extraction rate depends on the probing rate from Alice and Bob and the number of secret bits per probing. The amount of secret bits extracted in a time varying channel is influenced by the thresholding. Considering 0s and 1s to be generated with equal probabilities (after proper thresholding) the secret bit extraction rate will be R_k [15]

$$R_k = 2 f_P (A = 1, B = 1)$$

where $p(A = 1, B = 1)$ is the joint probability of having 1 simultaneously at Alice’s and Bob’s bit strings. However, in this paper we consider KGR as the number of symmetric keys produced per unit time.

D. Bit Mismatch Rate

Usually BMR will be measured as a ratio of the number of bits that do not match between Alice and Bob to the number of bits extracted at the thresholding stage often used as a performance criterion for the quantization process [9]. The BMR is measured immediately after the thresholding stage because a single mismatch in the bitstring can render the secret key unusable. BMR differs from the bit error rate (BER) in communication theory, which represents the number of bits received in error. The two reasons for bit mismatch are the unavoidable inherent noise in any wireless communication link and the violation of reciprocity due to hardware impairments. As violation of nonreciprocity is compensated we are left with the inherent noise as a unique problem. This noise will add uncertainty to the transmitted bit strings given the received bit strings. Ideally, both bit strings should have been identical. The bit mismatch probability can be described as follows [15]:

$$P_N = 1 - (1 - p_e)^N$$

where p_e will be the probability of a single erroneous bit defined as [32]

$$p_e = P(B = 0|A = 1) = \frac{P(B = 0, A = 1)}{P(A = 1)}$$

where $P(B = 0|A = 1)$ is the conditional probability of Bob’s bit being 0 when Alice’s is 1.

IV. NONRECIROCITY COMPENSATION AND TC RECONCILIATION IN VANET

The key generation process presented in Fig. 2 considers for error reconciliation the method presented in [15] and for a first time TCs in a V2V environment. However, the input data in our case are generated synthetically in order to comply with V2V propagation settings.

A. V2V Channel Model

The synthetic simulated Bob’s channel response is generated by employing the Monte Carlo simulation method [53]. For the V2V setting the theoretical channel model that needs to
be simulated has been described in detail in [13]. Thus Bob’s response in time domain is written as

$$G_B(t) = \sum_{l=1}^{L} |a_l| \exp(j\phi_l) \exp(j2\pi u_l t).$$ \(7\)

The Doppler frequency \(u_l\) is determined by

$$u_l = u_{T,l} + u_{S,l} + u_{R,l},$$ \(8\)

where \(u_{T,l}\), \(u_{S,l}\), and \(u_{R,l}\) are the contributions due to Tx mobility, scatterers’ mobility, and Rx mobility, respectively. The Doppler shift \(u_{T,R,l}\) results from the departure (arrival) of the \(l\)th multipath component from the mobile Tx (to the mobile Rx). It is defined as [13]

$$u_{T,R,l} = u_{T,R,max} \cos \beta_{T,R,l} \cos \alpha_{T,R,l}$$ \(9\)

where \(u_{T,R,max} = v_{T,R}/\lambda\), \(\lambda\) is the carrier wavelength, \(u_{T,R}\) is the Tx (Rx) velocity, \(\alpha_{T,R,l}\) is the azimuth angle of departure (AOD) [angle of arrival (AOA)], and \(\beta_{T,R,l}\) is the elevation AOD (AOA) with respect to the Tx (Rx) motion. \(\alpha_{T,R,l}\) counts from the value \(-\pi\) in the negative \(y\)-axis returning to the same point in the clockwise direction and \(\beta_{T,R,l}\) is zero on the \(X-Y\) plane, \(\pi/2\) on the positive \(z\)-axis and \(-\pi/2\) on the negative \(z\)-axis. Considering interaction of the \(l\)th multipath component with a single mobile scatterer, the Doppler shift \(u_{S,l}\) will be [13]

$$u_{S,l} = (v_{S,l}/\lambda)(\cos \alpha_{S,l1} + \cos \alpha_{S,l2})$$ \(10\)

where \(v_{S,l}\) is the scatterer’s velocity, \(\alpha_{S,l1}\) the AOA, and \(\alpha_{S,l2}\) the AOD with respect to scatterer’s motion.

The target is to appropriately model each factor affecting the V2V channel response, namely \(|a_l|\), \(u_l\), and \(\phi_l\). In this paper we consider a normalized (power equal to unity) Rayleigh V2V channel with partially uniform 3-D scattering at both Alice’s and Bob’s sides with a Weibull distribution of the mobile scatterers’ velocity. Rather than just a scenario for demonstration, the partially 3-D uniform scattering can be further generalized to represent any multipath propagation scenario [54] whereas the Weibull distribution for the multipath power contributed by mobile scatterers has been proved a suitable modeling approach [55]. Thus the scatterers’ velocity, which in fact models the power contributed by mobile scatterers, is defined as

$$p_{u_S} = w u_S^{b-1} \exp \left(-w u_S^b / b \right).$$ \(11\)

where \(b \leq 1\) is the shape parameter and \(w\) the scale parameter. The amplitudes \(|a_l|\) are constant and phases \(\phi_l\) are uniformly distributed in \([-\pi, \pi]\), i.e., \(|a_l| = \sqrt{2/L}\) and \(\phi_l \sim U[-\pi, \pi]\) [53]. Each Doppler contribution of (7) has the following parameters need to be modeled: azimuth AOD, AOA \(\alpha_{T,R,l} \sim U[\alpha_{T,R,min}, \alpha_{T,R,max}]\) elevation AOD (AOA) \(\beta_{T,R,l} \sim U[\beta_{T,R,min}, \beta_{T,R,max}]\). AOA to mobile scatterer \(\alpha_{S,l} \sim U[-\pi, \pi]\), AOD to mobile scatterer \(\alpha_{S,l2} \sim U[-\pi, \pi]\), and power contributed by mobile scatterers \(u_S \sim p_{u_S}(u_S)\). The symbolism \(U[\ldots]\) stands for the uniform distribution in the designated interval. This scenario can approximate an urban environment with other mobile vehicles and heavy scattering.

In order to simulate a purely diffuse Rayleigh environment we need at least seven sum of sinusoids such as those seen in (7) [56]. For simulation purposes, we define \(L = 20\). The sampling/probing rate \(F_p = 1/T_{c,min}\) where \(T_{c,min} = 1/|v_{max} = (c/f_c)/(u_{T,max} + u_{R,max} + 2\alpha_{S,max})|\) is the minimum coherence time and \(u_{T,max}\), \(u_{R,max}\), and \(\alpha_{S,max}\) are the maximum Doppler shifts due to mobile transmitter, receiver, and scatterers, respectively. In this way, we secure that the channel is mostly probed in different coherence regions, thus successive bits will be independent, resulting keys with maximum entropy. Considering the maximum velocity of transmitter, receiver, and scatter to be 30 m/s, frequency of operation \(f_c = 6\) GHz, the probing rate is calculated as \(F_p = 2400\) samples per second. We can further reduce \(F_p\), as \(1/T_{c,min}\) is in fact its upper bound, however doing so, will reduce the KGR, resulting marginal improvement in the key entropy. The latter is just our perception and further research is required; however, it goes beyond the scope of this article, which focuses on the applicability of TCs at the information reconciliation stage and potential performance improvement. A possible solution might be to adapt \(F_p = 1/T_{c,min}\) to fit in changes of the coherence region due to variations in the propagation conditions (e.g., more intense scatterers’ mobility, more directional propagation, etc.).

B. Algorithmic Process

Alice’s channel response would normally arise by similar channel probing rate in time instances such that hers and Bob’s responses are taken within the same coherence region. However, to further improve performance, Alice’s response \(G_A(t)\) will arise after applying the nonreciprocity
Compensation model presented in [14]. Thus considering M estimates within the same coherence region between Alice and Bob, their channel responses are related as [14]

$$G_A(t) - G_B(t) \sim N(0, \sigma^2).$$

(12)

The variance is estimated by the discrepancy of Alice’s and Bob’s estimates as follows:

$$\sigma^2 = \frac{1}{M} \sum_{i=1}^{M} (G_{A,i}(t) - G_{B,i}(t) - \mu_t)^2$$

(13)

where

$$\mu_t = \frac{1}{M} \sum_{i=1}^{M} (G_{A,i}(t) - G_{B,i}(t)).$$

(14)

C. Results and Discussion

This method was presented in [15] where Alice and Bob determine samples from channel estimates above and below an upper and lower threshold discarding those in between, i.e., lossy thresholding. We use this approach to compare it against our TC correction process presented in Fig. 2. Those estimates are samples in a form of an excursion. The quantization process creates segments of those samples (also referred as excursions) of successive bit values of 1s and 0s. Each of those segments are created whenever a channel probe returns a reading that does not fall inside the thresholds. Alice selects a random set of these segments and sends to Bob the index of the channel estimate lying in the center of the segment defined as $i_{center} = \left(\left(i_{start} + i_{end} \right) / 2 \right)$ as a list L_a. The number of channel estimates are modeled in the simulation and the total size for each segment has been setup to $m = 5$ successive estimates that fall outside the thresholds (acceptable estimates). However, m is a configurable parameter of the algorithm that combined with the quantization process affects the tradeoff between KGR and bit miss-match probability. Indeed a larger value of m reduces the number of secret bits that can be generated per second. Following implementation and testing in [15], we define $m = 5$. For each index from Alice, Bob checks his segments and verifies his samples centered around that index above or below the thresholds q_-, q_+ matched with Alice and generates a new list of those indices $L_b \leq L_a$. Bob sends L_b over to Alice. Both Alice and Bob quantize their channel estimates at each index of L_b in order to generate the bit-string. Thus, this method simultaneously accomplishes thresholding and information reconciliation.

\section{C. Results and Discussion}

Part of the algorithmic operation is to develop an optimization subroutine to adaptively change the threshold as a function of the temporal variability of the channel. The optimization routine will consider several attributes such as multicentered 3-D scattering, specular-reflected multipath components, and multiple bounces on mobile objects in dense propagation environments. Threshold selection has to be adopted dynamically to the temporal variations induced by the aforementioned effects. The thresholds should be refreshed after a specific amount of time over which the stationarity region has been crossed. We anticipate the refresh to take place every ten coherence regions due to the inherent nonstationarity of the V2V channel [13]. An alternative way to refresh the thresholding process could be to consider a Doppler spectrum correlation criterion. More specifically, considering the normalized Doppler spectrum as a probability distribution of Doppler frequencies, the Doppler correlation coefficient will be defined as

$$\rho(X, Y) = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y}$$

(15)

where $\text{cov}(X, Y)$ is the covariance of the X, Y normalized Doppler spectra and σ_X, σ_Y are the standard deviations of X, Y, respectively. When the correlation coefficient falls below a specified threshold, e.g., the quantization and thresholding process will be refreshed. The first phase of the routine developed is the construction of the Synthetic data which will be generated via Monte Carlo simulation taking into account the number of multiple components, the sampling rate and total number of samples. In the next stage the probed received envelopes are generated considering an appropriately defined probing rate in order to maximize the entropy in the subsequent quantization step. From the received data, the transmitted data are modeled by considering nonreciprocity compensation. At this stage a lossy quantization process is preferred due to its computational simplicity. The target is to end up with a maximum secret bit extraction rate and entropy. For that purpose, in the following step several runs should take place considering the thresholds multiple pairs. A feasibility study of both lossless and lossy quantization processes and their applicability in V-V scenarios is an area for further investigation. We consider the transmission scenario between Alice and Bob. The transmitter’s samples are modeled by adopting a CGC technique which compensates channel nonreciprocity. This is done by adding a zero mean Gaussian variability to the receivers samples. Thus, the input information sequence in the TC represents the generated key for Bob, while the output of the AWGN channel after turbo encoding designates the generated key for Alice. Then, turbo decoding is performed and the performance of the reconciliation method can be evaluated by measuring the BER and the KGR.

Bob’s generated sequence after quantization is fed to the input of a TC. During this process a single threshold is adopted as a lossless quantization scheme with the potential to substantially increase the KGR [32]. The threshold adopted in this paper is static and equal to 1. However, an adaptive quantization process related to the channel temporal variability that updates the threshold at each stage is currently investigated. Turbo decoding is then performed in order to generate a symmetric output, i.e., symmetric keys for Alice and Bob. Increasing the number of decoding iterations in TCs reduces the BER, thus, improving the bit miss-match rate between Alice and Bob. Furthermore, it would result to an increased KGR at the expense of added computational complexity as part of the turbo decoding process. In our algorithm, TCs are simulated with a single iteration. Performance of the reconciliation method can be evaluated by measuring the BMR and to the BER in our case. The comparison is made against
The sample indexing technique already applied in our algorithm as discussed in Section IV-B. We measure the efficiency and efficacy of our algorithm against widely adopted metrics, namely entropy, bit miss-match rate, probing rate, and KGR. We calculated BMR for the indexing method by considering the discarded indexes after Alice’s and Bob’s channel probing. In Table I we compute the KGR for different key lengths. Compared to the samples’ indexing method in [9], there was a significant improvement on both BMR and KGR. The simulated BER to generate a symmetric shared key between Alice and Bob after error reconciliation is estimated to only 0.0752 using TCs. Furthermore, the BMR with single thresholding is only 0.02 whereas the estimated BMR with the indexing technique is around 0.22 in both cases of static and mobile scatterers. The KGR was also reported high considering different key lengths requested. For instance, the secret key rate to generate the 128-bit symmetric key is 35 good keys per minute with TCs while it varies from 3 to 7 symmetric keys per minute with the indexing technique. As shown in Table I, simulations proved similar improvements for different key lengths as part of the error reconciliation process. Satisfactory entropy values were obtained throughout all rounds of simulation during the key extraction process ranging from 0.85 to 0.97 bits per sample. Note that the BMR with the indexing technique is nearly the same for different key lengths which is coherent with the uniform method used by the authors. In Table II, we present a comparison between the BMR achieved in our approach with existing RSS-based approaches published in the literature.

V. CONCLUSION

We successfully combined nonreciprocity compensation and TCs for information reconciliation as the most important features in V2V communication including 3-D scattering and scatterers’ mobility. Findings from our evaluations indicated significant improvements were achieved in KGR with reduced BMR when TCs are employed against an existing indexing method. Our proposed technique can be used to secure communications between vehicular nodes in an ad hoc SIoT network, and this has applications in both civilian and adversarial/military context (e.g., Internet of Military Things and Internet of Battlefield Things).

Future studies include the investigation of TCs for error conciliation purposes especially in the context of SIoT networks. For example, we will focus on several parameters that affect performance of TCs such as component decoding algorithms, number of decoding iterations, generator polynomials, constraint lengths of the component encoders and the interleaver type. Increasing the number of iterations in the TC can significantly improve the BER, thus generating more symmetric keys. Furthermore, we are working toward the single thresholding process by creating a dynamic threshold that is updated according to the receiver’s samples.

ACKNOWLEDGMENT

The authors would like to thank G. Samartzidis for his initial contribution in the algorithm development.

REFERENCES

The authors would like to thank G. Samartzidis for his initial contribution in the algorithm development.

Gregory Epiphaniou (GS’10–M’10) is currently a Reader of cyber security with the Wolverhampton Cyber Research Institute, University of Wolverhampton, Wolverhampton, U.K. He also holds several industry certifications around information security, and currently acts as a subject matter expert with the Chartered Institute for Securities and Investments, London, U.K. He has been a Leading Trainer and a Developer for bespoke cyber security programmes with a dedicated strong team of experts and trainers in several technical domains in both offensive and defensive security. He has also contributed to a numerous public events and seminars around cyber security, course development, and effective training both private and government bodies.

Petros Karadimas (S’04–M’11) was born in Greece. He received the Diploma (M.Eng.) and Ph.D. degrees from the Department of Electrical and Computer Engineering, University of Patras, Patras, Greece, in 2002 and 2008, respectively. In 2009, he became a Research Fellow with the Department of Computer Science and Technology, Centre for Wireless Network Design, University of Bedfordshire, Luton, U.K., where he became a Lecturer of electronic engineering in 2011 and then a Senior Lecturer in 2015. In 2016, he joined the University of Glasgow, Glasgow, U.K., as a Lecturer affiliated with the Glasgow College UESTC educational programs. He was a Principal Investigator of a CDE/DSTL funded project designing key generation algorithms for vehicular communication systems by exploiting the rapid temporal variability of the communication links. His current research interests include wireless channel characterisation, multiantenna systems performance, wireless security over the physical layer, and wireless transceivers performance.

Dhouka Khaier Ben Ismail received the M.Eng. and Ph.D. degrees (Highest Hons.) from Telecom Bretagne, Brest, France, in 2008 and 2011, respectively. She joined the University of Bedfordshire, Luton, U.K., as a Lecturer of telecommunications and network engineering in 2016. She was specialized in space communications systems at the French “Grande Ecole” ISAE, Toulouse, France. She performed research for several years as a Post-Doctoral Research Fellow first with Telecom Bretagne, then with Thales Airborne Systems, Flancourt, France, and then with IFREMER, Issy-les-Moulineaux, France. Her current research interests include signal processing applied to telecommunications and oceanography, channel coding, digital communications and information theory, and error correction in vehicular ad hoc network environments. Dr. Khaier Ben Ismail was a recipient of the award by two French lecturer qualifications in two different fields in 2016, the IEEE Best Paper Award, and several productivity bonuses. She is a Fellow of the U.K. Higher Education Academy and an Engineering Professors’ Council Member.

Haider Al-Khateeb received the B.Sc. degree (First-Class Hons.) in computer science and Ph.D. degree in cyber security. He is a Lecturer with the School of Computer Science and Technology, where he conducts research with the Institute for Research in Applicable Computing, University of Bedfordshire, Luton, U.K. He specializes in cyber security and digital forensics and incident response. He is a University Lecturer, a Researcher, a Consultant, and a Trainer with the U.K. Higher Education Academy. He has authored or co-authored numerous professional and peer-reviewed articles on topics, including authentication methods, IoT forensics, cyberstalking, anonymity, and steganography. Dr. Al-Khateeb is a Fellow of the U.K. Higher Education Academy.

Ali Dehghantanha (GS’07–M’12–SM’16) received the Ph.D. degree in cyber security. He has served many years in a variety of research and industrial positions. Dr. Dehghantanha was a recipient of several professional certificates such as GXPN, GREM, GCFA, CISM, and CISSP. He is a Marie-Curie International Incoming Fellow of cyber forensics and a Fellow of the U.K. Higher Education Academy.

Kim-Kwang Raymond Choo (M’03–SM’15) received the Ph.D. degree in information security from the Queensland University of Technology, Brisbane, QLD, Australia, in 2006. He currently holds the Cloud Technology Endowed Professorship with the University of Texas at San Antonio, San Antonio, TX, USA. Dr. Choo was a recipient of the Cybersecurity Educator of the Year—APAC (Cybersecurity Excellence Awards are produced in cooperation with the Information Security Community on LinkedIn) in 2016, the 1004 Digital Forensics Research Challenge organized by Germany’s University of Erlangen–Nuremberg in 2015, the ESORICS 2015 Best Paper Award, the 2016 Highly Commended Award by the Australia New Zealand Policing Advisory, the Fulbright Scholarship in 2009, the 2008 Australia Day Achievement Medalion, and the British Computer Society’s Wilkes Award in 2008. He serves on the Editorial Board of Computers and Electrical Engineering, Cluster Computing, Digital Investigation, IEEE ACCESS, IEEE TRANSACTIONS ON CLOUD COMPUTING, IEEE Communications Magazine, Future Generation Computer Systems, the Journal of Network and Computer Applications, PLoS ONE, and Soft Computing. He has also served as the Special Issue Guest Editor for the ACM Transactions on Embedded Computing Systems in 2017, Future Generation Computer Systems for the period 2016 and 2018, the IEEE TRANSACTIONS ON CLOUD COMPUTING in 2017, the IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING in 2017, the Journal of Computer and System Sciences in 2017, Multimedia Tools and Applications in 2017, Personal and Ubiquitous Computing in 2017, and Wireless Personal Communications in 2017. He served as the Special Issue Guest Editor for the ACM Transactions on Internet Technology in 2016, Digital Investigation in 2016, the IEEE TRANSACTIONS ON CLOUD COMPUTING in 2015, IEEE Network in 2016, and Pervasive and Mobile Computing in 2016. He is also a Fellow of the Australian Computer Society and a Honorary Commander of the 502nd Air Base Wing, Joint Base San Antonio–Fort Sam Houston.
AUTHOR QUERIES
AUTHOR PLEASE ANSWER ALL QUERIES

PLEASE NOTE: We cannot accept new source files as corrections for your paper. If possible, please annotate the PDF proof we have sent you with your corrections and upload it via the Author Gateway. Alternatively, you may send us your corrections in list format. You may also upload revised graphics via the Author Gateway.

AQ1: Please confirm/give details of funding source.
AQ2: Please confirm if the location and publisher information for References [1], [2], [15], and [34] are correct as set.
AQ3: Please provide the volume number, issue number, page range, month, and the publication year for Reference [3].
AQ4: References [8] and [11], and [13] and [31] were the same in your originally submitted manuscript, so References [11] and [31] have been deleted, and the following references (and their in text citations) have been renumbered. Please check and confirm that they are correct as set.
AQ5: Please confirm the volume number and also provide the issue number or month and page range for References [10] and [49].
AQ6: Please provide the complete details and exact format for Reference [41].
AQ7: Please provide the city name of birth for the author “P. Karadimas.”
AQ8: Please verify and confirm that the edits made to “D. Kbaier Ben Ismail and H. Al-Khateeb” biographies retain the intended meaning.
AQ9: Please provide better quality photo for the author biography of “K.-K. R. Choo.”