Joule heating and buoyancy effects in electro-osmotic peristaltic transport of aqueous nanofluids through a microchannel with complex wave propagation

Beg, OA, Tripathi, D and Sharma, A 2017, 'Joule heating and buoyancy effects in electro-osmotic peristaltic transport of aqueous nanofluids through a microchannel with complex wave propagation' , Advanced Powder Technology .

[img] PDF - Accepted Version
Restricted to Repository staff only until 21 December 2019.

Download (1MB)

Abstract

Electro-osmotic peristaltic transport of aqueous nanofluids in a two-dimensional micro-channel is examined analytically. Such flows arise in bio-mimetic pumping systems at the very small scale of interest in physiological treatment e.g. occular drug delivery systems. Complex waveforms are imposed at the walls to mimic sophisticated peristaltic wave propagation scenarios. Nano-particles are assumed to be in local thermal equilibrium. Joule electro-thermal heating is included. The dimensional conservation equations are linearized and transformed from the wave to the fixed (laboratory) frame under lubrication theory approximations. The emerging dimensionless model features a number of important thermo-physical, electrical and nanoscale parameter, namely thermal and solutal (basic density) Grashof numbers, nanoscale Brownian motion parameter, thermophoresis parameter, Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity), Debye electrokinetic length and Joule heating to surface heat flux ratio. Closed-form solutions are derived for the nano-particle volume fraction, temperature, axial velocity, averaged volumetric flow rate, pressure difference across one wavelength, skin friction (wall shear stress function), Nusselt number (wall heat transfer rate) and stream function distribution in the wave frame. The influence of selected parameters on these flow variables is studied with the aid of graphs. Bolus formation is also visualized and streamline distributions are observed to be strongly influenced and asymmetric in nature.

Item Type: Article
Schools: Schools > School of Computing, Science and Engineering
Journal or Publication Title: Advanced Powder Technology
Publisher: Elsevier
ISSN: 0921-8831
Related URLs:
Depositing User: OA Beg
Date Deposited: 12 Dec 2017 13:10
Last Modified: 05 Jan 2018 15:50
URI: http://usir.salford.ac.uk/id/eprint/44609

Actions (login required)

Edit record (repository staff only) Edit record (repository staff only)

Downloads

Downloads per month over past year