Skip to the content

Decision support methods in diabetic patient management by insulin administration neural network vs. induction methods for knowledge classification

Ambrosiadou, B, Vadera, S, Shankararaman, V and Goulis, D 2000, Decision support methods in diabetic patient management by insulin administration neural network vs. induction methods for knowledge classification , in: Proc of the ICSC Symposium on Neural Computation, 2000, Berlin, Germany.

[img]
Preview
PDF - Published Version
Download (182kB) | Preview

    Abstract

    Diabetes mellitus is now recognised as a major worldwide public health problem. At present, about 100 million people are registered as diabetic patients. Many clinical, social and economic problems occur as a consequence of insulin-dependent diabetes. Treatment attempts to prevent or delay complications by applying ‘optimal’ glycaemic control. Therefore, there is a continuous need for effective monitoring of the patient. Given the popularity of decision tree learning algorithms as well as neural networks for knowledge classification which is further used for decision support, this paper examines their relative merits by applying one algorithm from each family on a medical problem; that of recommending a particular diabetes regime. For the purposes of this study, OC1 a descendant of Quinlan’s ID3 algorithm was chosen as decision tree learning algorithm and a generating shrinking algorithm for learning arbitrary classifications as a neural network algorithm. These systems were trained on 646 cases derived from two countries in Europe and were tested on 100 cases which were different from the original 646 cases.

    Item Type: Conference or Workshop Item (Paper)
    Uncontrolled Keywords: decision tree induction, neural networks, diabetes management
    Themes: Subjects / Themes > Q Science > QA Mathematics > QA075 Electronic computers. Computer science
    Subjects outside of the University Themes
    Schools: Colleges and Schools > College of Science & Technology
    Colleges and Schools > College of Science & Technology > School of Computing, Science and Engineering
    Colleges and Schools > College of Science & Technology > School of Computing, Science and Engineering > Data Mining and Pattern Recognition Research Centre
    Journal or Publication Title: Proc of the NAISO Symposium on Neural Computing
    Publisher: ICS, Berlin, Germany
    Refereed: Yes
    Depositing User: S Vadera
    Date Deposited: 23 Jun 2010 11:07
    Last Modified: 20 Aug 2013 17:19
    URI: http://usir.salford.ac.uk/id/eprint/9403

    Actions (login required)

    Edit record (repository staff only)

    No Altmetrics available

    Downloads per month over past year

    View more statistics