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Abstract 

Discomfort experienced during surface functional electrical stimulation (FES) is 

thought to be partly a result of localised high current density in the skin underneath 

the stimulating electrode. This paper describes a finite element (FE) model to predict 

skin current density distribution in the region of the electrode during stimulation and 
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its application to the identification of electrode properties that may act to reduce 

sensation. The FE model results showed that the peak current density was located in 

an area immediately under the stratum corneum, adjacent to a sweat duct. A 

simulation of surface FES via a high resistivity electrode showed a reduction in this 

peak current density, when compared with that with a low resistivity electrode. 

 

Key words 

Current density, finite element modelling, functional electrical stimulation, sensation, 

surface electrode. 

 

Introduction  

Functional electrical stimulation (FES), applied via surface electrodes, can be used to 

partially restore motor function which has been lost as a result of, for example, a 

stroke, spinal cord injury, or cerebral palsy 1,2. However, FES is still used by relatively 

small numbers of patients. One aspect contributing to the low uptake is the discomfort 

experienced when current is passed through the skin 2. Alternative approaches to 

reducing this discomfort have been widely examined, including varying the stimulus 

waveform and pulse width 3,4. There is some evidence that changing electrode 

properties can affect the sensation 5-7 and this paper examines this area in detail.  

 

The stimulation targets of surface FES are motor neurons. However, sensory receptors 

located in the skin lie between the electrodes and motor neurons, and also respond to 
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stimulation. For a long straight neuron axon, typically found in peripheral motor 

nerves, the gradient of electric field along the nerve (representing stimulation intensity) 

is probably the best measure of whether the nerve will respond to stimulation 8. 

However, sensory receptors in the skin are convoluted and vary widely in their 

orientation with respect to the local electric field. Hence the sensory receptors will 

experience an electric field gradient along their length that is dependent both on the 

varying magnitude of the electric field and the orientation of the particular receptor 

within the field. As the orientation is unknown, the magnitude of the electric field, 

which is proportional to current density for a given medium resistivity, may 

reasonably be adopted as a measure of stimulation intensity for skin receptors 4. A 

value of 0.1mA/cm2 has been cited as a representative estimate of the current density 

threshold for stimulation of most sensory receptors 4. 

 

The skin is covered by the highly resistive stratum corneum (SC) lying on top of the 

epidermis and is traversed by skin appendages such as hair follicles and sweat glands. 

It is believed that stimulus current will preferentially flow through the skin via the low 

resistance skin appendages, acting as “current pores”, possibly creating areas of high 

current density in their vicinity 9. However, based on authors’ knowledge, there has 

been little previous research to examine this effect in detail, or how the electrical 

properties of electrodes might influence the current distribution in the vicinity of skin 

appendages.  
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This paper describes the development of a FE model, which represents the anatomical 

structures in the skin and below, and the application of this model to explore the effect 

of a high impedance layer between the skin and the electrode. It was hypothesised that 

the introduction of such a layer would increase the impedances of all possible current 

pathways, reducing the effect of impedance differences between pathways and hence 

reducing peak current densities.  

 

Methods 

Prior to developing the model, a preliminary study was carried out to verify the 

hypothesis that a high impedance layer would reduce peak current densities. A pin 

array was constructed of discrete current paths, most of which were highly resistive, 

but with a single low resistance path. This experiment demonstrated that a high 

impedance layer between the current source and the pins would reduce the ratio of 

current through the low impedance path to that through the high impedance paths 10.  

 

A 2D axi-symmetric FE model (see figure 1), centred on a current pore, was created, 

using a FE package (Ansys 10.0, Ansys Inc, USA). The skin, fat and muscle were 

modelled as horizontal layers and the skin was divided into SC and the rest of the skin 

(RS). The current flow in the vicinity of the current pore was assumed not to be 

influenced by the presence of any other current pores, and hence only one current pore 

(a sweat duct) was included in this FE model. As the average number of sweat ducts 

in the skin is about 1 per mm2 11, the width of the axi-symmetric model was selected 
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to be 0.5mm. The current pore traverses skin, fat and muscle. Representative values 

for the thickness of each component, together with the width of the current pore were 

taken from the literature 12,13. Bone, blood vessels and sensory nerves were assumed 

to have negligible effect on the parameters of interest and were not explicitly included 

in the model. A metal foil stimulating electrode was modelled overlying a hydrogel 

layer on the skin surface. Differentiation between the materials in the model was 

achieved through assigning appropriate resistive properties to the elements 

representing the different media (see table 1). Apart from the SC, the other tissue 

properties are dominated by resistivity. To account for the capacitive properties of the 

SC, an equivalent resistivity was calculated at 1.67kHz (The pulse width was defined 

as 300μs for stimulation, and thus the equivalent frequency was approximately 

1.67kHz.) to include both its resistive and capacitive properties. A convergence study 

was carried out to ensure the FE mesh-density was sufficiently fine.  

 

As stimulation of a nerve for a given stimulation waveform is not a temporal 

summation but only varies with stimulation intensity, DC input current was used in 

the model. The applied input current was uniformly distributed over the surface of the 

foil electrode. Due to the limitation of the model size, the anode (common) electrode 

cannot be placed at a sufficiently remote position on the skin surface, and thus the 

bottom of the muscle was assumed to be at zero voltage and used as the grounding 

electrode. As current flow in the vicinity of the current pore was assumed not to be 

influenced by any other current pores, no current would enter or exit the model 
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laterally, i.e. via any outer surface of the model other than the foil electrode surface 

and the muscle bottom. Hence, the boundary conditions for the nodes on the model 

edges were defined as open-circuit to prevent current entering or exiting the model.  

 

Results 

As sensory receptors are normally located in the dermis, the current density 

distribution in the RS was assumed to determine sensation. The FE model predicted 

that the peak current density (hot spot) in the RS was located in the top corner of the 

RS layer, adjacent to the SC and the sweat pore (see figure 2). The non-uniformity of 

current distribution was quantified using a current hogging coefficient (CHC), which 

was defined as the ratio between the peak current density and the mean current 

density in the RS. The effects of four variables (hydrogel resistivity, hydrogel 

thickness, sweat duct resistivity, and SC thickness) on CHC were predicted by the FE 

model, as shown in figures 3, 4 and 5. Four different hydrogels were modelled, 

corresponding to commercially available samples (see tables 2 and 3), and their 

effects on CHC were plotted (figure 6).  

 

Discussion  

Figure 3 implies that using hydrogel with a higher resistivity leads to a markedly more 

uniform current distribution in the vicinity of the current pore. Varying hydrogel 

thicknesses from 0.3mm to 1.5mm has very little influence on current hogging. 

Therefore, hydrogel resistivity has the dominant effect on the current density 
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distribution for the range of hydrogel thicknesses modelled.  

 

The resistivity of the sweat duct can be assumed to vary with the amount of sweat in 

the duct. Figure 4 suggests that current hogging peaks when the resistivity of the 

sweat duct is similar to that of the rest of the skin but the effect is not large. Hence, 

either sweaty skin or dry skin would be associated with somewhat more uniform 

current distribution in the RS during electrical stimulation.  

 

Figure 5 shows that the thinner the SC the less current hogging occurs in the vicinity 

of a current pore. This suggests that reducing the thickness of the SC before 

stimulation will not only reduce the skin impedance, but also improve the uniformity 

of current distribution.  

 

Four commercial hydrogels with a range of resistivities (see figure 6) were modelled. 

The results showed that current hogging reduced with increased hydrogel resistivity. 

The highest resistivity (hydrogel AG) resulted in a current hogging coefficient of 2.2, 

some 40 times lower than that found with the lowest resistivity hydrogel (hydrogel 

703). This implies that the sensation associated with stimulation may be reduced by 

use of a high resistivity electrode.  

 

The study limitations are as follows. Firstly, it has only examined current density in 

the vicinity of a current pore and does not consider other mechanisms by which high 
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current density can result, such as the electrode edge effect 4,7. Secondly, no in-vivo 

validation of the model was conducted because of the difficulties of doing so without 

using unacceptably invasive methods. However the results of 6 tend to support the 

results presented here. 

 

Conclusions 

The FE model described here was used to predict the current density distribution in 

the skin during electrical stimulation due to the presence of a current pore. It can be 

used to predict the magnitude of the non-uniformity of the current density caused by 

anatomical parameters, such as SC thickness and sweat duct resistivity, and electrode 

parameters, such as hydrogel thickness and resistivity. The results suggest that a high 

resistivity stimulating electrode could reduce the discomfort associated with 

transcutaneous electrical stimulation, which is in agreement with our previously 

published experimental results 6.  
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Figure 1: Schematic of the FE model axi-symmetric around y axis, 

indicating half of the cross section of a cylindrical model.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Current density distribution showing the 

hot spot in the RS. Hydrogel resistivity: 55Ωm 
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Figure 3: Effect of hydrogel thickness and 

resistivity on CHC (all 4 curves are overlaid) 

SC: 0.015mm, Sweat: 1.4Ωm 
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Figure 4: Effect of sweat duct resistivity on CHC 

SC: 0.015mm, Hydrogel: 100Ωm 

 

 

 

 

 

 

 

 

Figure 5: Effect of SC thickness on CHC 

Sweat: 1.4Ωm, Hydrogel: 100Ωm 
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Figure 6: Effect of hydrogel samples on CHC 

SC: 0.015mm, Sweat: 1.4Ωm 
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Components Resistivity (Ωm) 

Foil electrode 1.5E-7 

Hydrogel 10-105

SC 5300 

RS 4.5 

Fat 63 

Muscle 2 on X, 4 on Y 

Sweat 1.4-45 

Table 1: Resistivities of the model components [10, 11] 

 

Hydrogel name Approx thickness (mm) Resistivity (Ωm) 

Hydrogel 703 0.9 55 

Hydrogel 803 0.9 206 

Hydrogel ST 0.5 1363 

Hydrogel AG 0.3 25185 

Table 2: Properties of the hydrogel samples 

 

Hydrogel name Product code Suppliers 

Hydrogel 703 AG703 Axelgaard manufacture Co., Ltd. USA

Hydrogel 803 AG803 Axelgaard manufacture Co., Ltd. USA

Hydrogel ST SRBZAB-05SB Sekisui Plastics, Co., Ltd. Japan 

Hydrogel AG AG3AM03M-P10W05 Sekisui Plastics, Co., Ltd. Japan 

Table 3: Product details of the selected hydrogels 
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