Total non-refraction angle at Kerr defocusing interfaces
Sánchez-Curto, J, Chamorro-Posada, P and Mcdonald, GS

<table>
<thead>
<tr>
<th>Title</th>
<th>Total non-refraction angle at Kerr defocusing interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Sánchez-Curto, J, Chamorro-Posada, P and Mcdonald, GS</td>
</tr>
<tr>
<td>Type</td>
<td>Conference or Workshop Item</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at:</td>
</tr>
<tr>
<td></td>
<td>http://usir.salford.ac.uk/id/eprint/18255/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2011</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Total non-refraction angle at Kerr defocusing interfaces

Julio Sánchez-Curto1 *, Pedro Chamorro-Posada1 and Graham S. McDonald2

1 Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática, Universidad de Valladolid, ETSI Telecomunicación, Campus Miguel Delibes s/n

2 Joule Physics Laboratory, School of Computing, Science and Engineering, University of Salford, Salford M5 4WT, UK

Spatial soliton refraction at interfaces separating two nonlinear media has traditionally been studied in terms of the paraxial Nonlinear Schrödinger (NLS) Equation, thus restricting the validity of results to vanishingly small angles of incidence [1]. This limitation is overcome within a Helmholtz nonparaxial framework [2], where a Nonlinear Helmholtz (NLH) equation [3] addresses the full evolution of a broad beam (when compared to the wavelength) propagating at arbitrary angles in relation to the longitudinal axis [4, 5].

This inherent nonparaxial character of solitons evolving at planar interfaces is captured in an unified, and generalized, Snell’s law [6] that addresses the evolution of both bright [6] and dark [7] solitons impinging either focusing or defocusing Kerr interfaces, respectively. As regards gray solitons, the Snell’s law also predicts the existence of a total non-refraction angle which establishes that total non-refraction (if possible) can only be achieved for a unique angle of incidence [8]. Unlike bright and black solitons, gray solitons can undergo internal refraction, external refraction or total transparency at the same nonlinear interface depending solely on the angle of incidence. This novel property has been proposed to lie in the core of either positive or negative lensing operations to be performed on dark soliton arrays.

Bibliografía

*e-mail: julsan@tel.uva.es