
Discovering cost­effective action rules
Kalanat,, N, Shamsinejad, P and Saraee, MH

Title Discovering cost­effective action rules

Authors Kalanat,, N, Shamsinejad, P and Saraee, MH

Type Conference or Workshop Item

URL This version is available at: http://usir.salford.ac.uk/18726/

Published Date 2011

USIR is a digital collection of the research output of the University of Salford. Where copyright
permits, full text material held in the repository is made freely available online and can be read,
downloaded and copied for non­commercial private study or research purposes. Please check the
manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please
contact the Repository Team at: usir@salford.ac.uk.

mailto:usir@salford.ac.uk

Discovering Cost-Effective Action Rules

Nasrin Kalanat, Pirooz Shamsinejad, Mohammad H. Saraee

Electrical and Computer Engineering Department

Isfahan University of Technology

Isfahan, Iran

n.kalanat@ec.iut.ac.ir, p_shamsinejad@ec.iut.ac.ir , m.saraee@salford.ac.uk

Abstract—Mining informative patterns from databases is the

historical task of data mining. But now, mining actionable

patterns is becoming the new duty of data mining. Most of

machine learning and data mining algorithms only focus on

finding patterns and usually don't take any step for suggesting

actions and users will be responsible for it. Therefore users will

be faced with many patterns that they are confused about how

and what to do with them. So that extracting actionable

knowledge from database, to offer actions that lead to an

increase in profit is very critical.

Up to now few works have been done in this field and they

usually suffer from drawbacks such as incomprehensibility to

the user, neglecting cost, not providing rule generality. Here we

attempt to present a method to resolving these issues. In this

paper CEARDM method is proposed to discovering cost-

effective action rules from data. These rules offer some cost-

effective changes to transferring low profitable instances to

higher profitable ones.
Keywords- actionable knowledge discovery; cost-effective

action rules; profit mining

I. INTRODUCTION

One of the best describing definitions of Data Mining in
literature is “the process of discovering patterns in data. The
process must be automatic or semiautomatic. The pattern
discovered must be meaningful in that they lead to some
advantage, usually an economic advantage. ” [1]. Up to now
most of the researches in this area have focused on finding
different types of patterns from data but a few of them have
paid enough attention on usability of mined patterns. The
reason may be how much term “usable” is elusive.

Actionable Knowledge Discovery is a direct respond to
the need of finding more usable patterns. Let illustrate this
concept by an example in CRM. Consider a bank loan
system. We can define two types of useful knowledge in this
system. First, “How much is the probability of a customer
pay back his loan?” and second, “How we can increase the
probability of a customer pay back his loan?” The first
question is more informative and less actionable and it is the
concern of traditional data mining, but the second one is
more actionable and AKD aiming for answering it.

We can divide the works have been done in AKD from
the types of mined patterns point of view into two categories:
those who try to define some actionability measures for
filtering mined patterns[2,3] and those who try to extract new
actionable patterns from mined patterns[4,5]. In other words

methods in first category don’t create new patterns but those
in second one extract new type of pattern namely “action
rules”. This presented work is one of those in second
category.

 Action rule generally means a rule that suggest an action
to user to gain a profit in his/her domain. For example in our
bank loan system an action rule could be like this : “If we
can change marital status of male customers from single to
married in some way then the probability of they pay back
their loan will be more ”. It is worth noting that action rules
are not talking about causality but about probability.

Up to now a few works have been done on mining action
rules. For example in [4,5] a method for extracting cost-
effective action rules for each customer from decision tree is
proposed. In [6] some pruning strategies devised for filtering
most actionable patterns. In that work the actions supposed
to be present. Constructing action rules from certain pairs of
previously mined classification rules is presented in
[7,8,9,10] but in these works the cost of actions is neglected.

There are two important factors in constructing an action
rule. First is the generality of action rule that means to how
many instances it can apply. Second is the cost of action rule
in its domain. In current paper a new method is proposed for
mining cost-effective action rules. Our contribution is to
combine the generalization power of E-action rules [9] and
cost-effectiveness. For doing this a new algorithm, namely
CEARDM is devised for extracting cost effective E-action
rules from an information system. The rest of paper is as
follows: In section II action rules are defined and the
method of constructing them is described. The CEARDM is
explained in section III. Finally we conclude the paper in
section IV.

II. ACTION RULES

Action rules would be constructed from certain pairs of
previously mined classification rules [10,11]. These rules
suggest changes in the value of some attributes of an instance
to make it probably more profitable. For example let assume
after mining purchasing data of a company two classification
rules have been found as follows:

1 : (,) (,) (,)r sex male service H loyality high 

1 : (,) (,) (,)r sex male service L loyality low 

mailto:n.kalanat@ec.iut.ac.ir
mailto:p_shamsinejad@ec.iut.ac.ir
mailto:m.saraee@salford.ac.uk

By combining these two rules that are only informative we
can make this action rule that suggests some changes to
improve the loyalty of a group of customers:

1 2 : (,) (,)

(,)

r r action rule sex male service L H

loyality low high

   



This rule suggests if we change the service status of male
customers from low to high then it will be probable that their
loyalty goes from low to high. But the problem is how to
construct these rules from data and how to find the most
valuable of them. Both of these will be discussed in this
paper.

We assume data are placed in a table named decision
table. Columns of table are attributes and rows are instances.
Attributes are of two types: condition attributes and decision
attributes. Decision attributes are attributes that profit in
domain is related to them directly. In above example
“loyalty” is a decision attribute and “sex” and “service” are
condition attributes. Table 1 is a decision table for a fictitious
problem. In this table {A,B,C,D,E,F} are condition
attributes, Z is a decision attribute and {X1,X2,…,X13} are
instances. For simplicity it’s assumed that values of
condition attributes are numbers or are mapped to numbers,
and there is only one decision attribute shown by Z.

Domain Driven Data Mining [15, 16] suggests that for
making the results of DM process more applicable in real
domains more characteristics of domain must be integrated
to the process. According to this rule we took a more realistic
look at condition attributes and divided them to three types:
1. Stable attributes which their values can’t change at
sensible cost like “sex”. 2. Flexible attributes which their
values can change at reasonable cost i.e. “service level”. 3.
Asymmetric attributes which changing some of their values
is sensible and others is not, i.e. “experience level” that it can
be changed from low to high by spending some money and
time but it can’t be changed from high to low at a sensible
cost.

For integrating characteristics of all types of attributes in
mining cost-effective action rules it is defined a cost matrix
CMA for each attribute A. Rows and columns of CMA are
both values of attribute A and CMA[i][j] shows the cost of
changing i

th
 value to j

th
 value; changes with unreasonable

cost show by infinity value in their corresponding cells. Cost
matrixes for attributes of above example are depicted in Fig.
1.

In addition to cost, we must consider the profit that
gained from an action. In this work we assume the decision
attribute has two values low and high and the profit of
changing decision attribute value from low to high for an
instance is measurable and is shown by ()P L H . Changes

that their cost is more than ()P L H are worthless. The

minimum cost of a change in value of an attribute is called
flexibility factor of that attribute and it can be simply
computed from cost matrix of each attribute.

Based on the above discussion the attributes are divided
into two main types: Attributes that their flexibility factor is
more than ()P L H , namely invaluable attributes and those

with flexibility factor less than ()P L H , namely valuable

Table 1: A sample decision table

 A B C D E F Z

X1 1 1 2 1 1 2 L

X2 1 1 2 1 2 2 L

X3 2 2 2 2 1 1 L

X4 2 2 2 1 1 2 L

X5 1 1 2 2 1 2 L

X6 1 1 1 2 1 2 L

X7 1 2 2 2 2 1 H

X8 2 3 2 2 2 1 H

X9 1 1 1 2 2 1 H

X10 2 1 1 1 1 1 H

X11 1 1 2 2 1 2 L

X12 1 1 1 1 1 2 L

X13 1 1 2 2 1 1 L

attributes.
Valuable attributes contain at least one possible change at

a reasonable cost regarding the most profit that may be
gained. If V stands for set of valuable attributes of decision
table T and IV for its invaluable attributes then table schema
can be shown by ({ })T V IV Z  . The new concept of

valuable and invaluable attributes makes it possible to define
flexibility or stability of attributes in a dynamic way which
means their flexibility in a particular domain will depend on
the profit that may be obtained by their changes in that
domain.

Classification rules are the raw material of action rules,
so that for discovery of action rules the first step is mining
classification rules from data. There are many algorithms for
finding classification rules like C4.5, ID3, CART[17]. Table
2 shows some classification rules mined from decision table
shown in Table 1. In this table each row represents a
classification rule and first column of each row shows the
instances satisfied that rule. For example the first row of the
table represents the following rule R and also informs
instances X1 and X2 satisfy this rule.

: (1) (1) (2) (2) ()R A B C F Z low        

For describing the process of constructing action rules
some notations must be defined. Let LR to be the set of the
left attributes of rule R, ValR,A to be the value of attribute A in
rule R and DR to be the value of decision attribute of R. So
that for above rule, LR would be the set {A,B,C,F}, ValR,A
equals 1 and DR would be “low”. Also the following
notations are persumed:

 (,)A v means attribute A must have the value of v.

 (,)A v means the value of attribute A must be

changed to the value of v.

 (,)A v w means attributes A must be changed

from the value of v to the value of w.

Figure 1: Cost Matrixes for attributes in decision table shown in table 1

2 1 C

15 0 1

0 8 2

3 2 1 B

50 30 0 1

40 0 100 2

0 50 20 3

2 1 A

100 0 1

0 100 2

2 1 F

8 0 1

0 3 2

2 1 E

1 0 1

0 1 2

2 1 D

100 0 1

0 18 2

Table 2: Mined classification rules with their supporting objects

 A B C D E F Z

x1,x2 1 1 2 1 2 L

x3,x4 2 2 2 1 L

x1,x5,x6,x11,x12,x13 1 1 1 L

x7,x8 2 2 2 1 H

x9,x10 1 1 1 H

There are two following preconditions for each pair R1
and R2 of classification rules to be able to construct an action
rule:

  
1 2

1 2
, , R R

R R
Val Val attr IV L L

attr attr
   


1 2
, ,R R

Val low Val high
Z Z
  

Where LR is the set of attributes in left side of rule R. If the
preconditions hold then R1 and R2 can construct an action
rule by the algorithm described in Algorithm 1.

But the problems are how to find the consistence pair of
classification rules and how to extract the most cost-effective
action rules. In the next section the CEAT algorithm is
presented as a solution to these problems.

III. EXTRACTING COST-EFFECTIVE ACTION RULES

A. Net Profit of Action Rule

For computing the net profit of an action rule it is
necessary to compute the number of instances that support it
in the population of instances. Let assume R be an action rule
that has been constructed from R1 and R2, (b1, b2,.., bp) be
set of all valuable attributes of R which have different values
in R1 and R2. If vi and wi stands for values of attribute bi in R1
and R2 respectively, then instance X is said to support R if
there is another instance Y as the following conditions hold:

Algorithm 1: The algorithm of constructing an action rule from a pair of

classification rules.


, ,X Z Y Z

Val low Val high  


,

,
X iibi p Val v  


,

,
Y iibi p Val w  


, ,

{ },
R X attr Y attr

attr IV L Val Val   


1

support X R


2

support Y R

The above conditions simply say that an object X
supports an action rule R if there is another instance Y that it
is possible to apply R on X and convert it to Y. This
definition is close to that described in [9] but with a change
in defining new concept of valuable and invaluable attributes
instead of flexible and stable attributes.

The net profit of an action rule R defines as follow:

() (,) support PNet r PNet x rx set of objects that r   (1)

Where PNet(x,r) is the net profit that gained from
applying action rule R on the instance X and can be
computed using Eq. (2):

(,) () ()PNet x r P L H Cost xi i   (2)

Where Costi(x) is the cost of changing i
th

 attribute of

instance X based on action rule R. For example, consider

rule r as below that is extracted from two rules which exist

in first row and last row of Table 2.
: (,1) (, 2 1) (, 2 1) (,)r B C F Z L H     

Based on above formulas its net profit can be computed as

follow:
() (1,) (2,) 2(10 (8 3)) 2PNet r PNet x r PNet x r      

We assume ()P L H = 10; the negative value for net profit

shows this rule is not cost-effective.

B. Discovering Cost-Effective Action Rule Algorithm

In this section we present a new algorithm for

discovering Cost-Effective action rules called CEARDM.
The algorithm works in two phases: 1- constructing a

cost-effective action tree from previously mined
classification rules, 2- Extracting cost-effective action rules
from the action tree. Action tree partitions rules based on
invaluable attributes. Each leaf of action tree will be
containing set of rules that the values of their invaluable
attributes have no conflict with each other. Two rules have
no conflict in their invaluable attributes if the values of their
invaluable attributes are the same or not important in at least
one of them. After constructing the action tree, algorithm
extracts action rules from the rules placed in leaves of the
action tree using algorithm 1 and finally select the most cost-
effective of them using Eq. (1). The complete algorithm is
shown in Algorithm 2.

Let us take Table 1 as an example of a decision table T
that cost matrixes of its attributes are presented in Fig. 1.
Assume now that our goal is to re-classify some objects from
the class H into the class L.

ARCM (R1, R2, IV, V) {
R= {};

for each

2 1

 [()]A IV L L
R R

   do

2

[,];
,R

R R A Val
A

 

for each

2 1

 [()]A V L L
R R

   do

If (

1 2

 & &
, ,

Val vi Val vi
R A R A

 ) then

1 2

[,];
, ,

R R A Val Val
R A R A

  

 for each

2 1

 [()]A V L L
R R

   do

2

[,];
,

R R A Val
R A

  

return R;

}

We represent the set R of classification rules extracted

from T as a table (see Table 2). First, CEARDM method
finds set of invaluable attributes and sorts them descending
based on theirs FF values. Since in our example FFA=100,
FFB=20, FFC=8, FFD=18, FFE=1, FFF=3, this set will be like
IV= {A, B, D}. Then the algorithm calls CEAT method. In
this step the construction of a cost-effective action tree starts
with all extracted classification rules as the root of the tree
(T1 in Fig. 2). Then CEAT select an unmarked attribute from
AIV which number of it's different values in current node be
more than one, then marks it and creates a branch for each of
its values. Then it places rules on corresponding branches
based on their value of selected attribute. Rules with “don’t

care” value for selected attribute will be placed in all
branches.

In our example the root node selection is attribute A, so
the table is divided into two sub-tables: one table contains
rules with value “1” or “don’t care” for attribute A and the
other contains rules with value “2” or “don’t care” for A.
Then the process is repeated recursively for each child node.
If at any time all instances at one node have the same
decision value, then the algorithm stops growing the tree
through that node (T3 in Fig. 2). When all invaluable
attributes are selected, tables in leaf nodes which contain at
least two rules with different decision values will be added to
EndTables (T4, T6, and T7 in Fig. 2). In second phase cost-
effective action rules will be extracted from each table in
EndTables.

The following action rule is extracted from T4 and it is
considered as cost-effective action rule because its net profit
is positive.

1
: (, 2) (, 2) (,1 2) (, 1) (,)r D C E F Z L H      

1 3 1
() (,) 9PNet r PNet x r 

T6 results the following action rule that is not considered as

cost-effective action rule because its net profit is not positive.

2
: (,1) (, 2 1) (, 2 1) (,)r B C F Z L H     

2 1 2 2 2
() (,) (,) 2PNet r PNet x r PNet x r   

Also r3 that is a cost-effective action rule is gained from T7:

: (, 2) (, 2) (,1 2) (, 1) (,)
3
r D C E F Z L H       

13 3

3 5 3 6 3 11 3
() (,) (,) (,)

(,) 12

PNet r PNet x r PNet x r PNet x r

PNet x r

   



Presented algorithm returns all cost-effective action rules

without any unnecessary comparison. It selects an attribute

with maximum FF value in each level of tree and dividing

rules based on it. If the cost of changing selected attribute is

more than resulting profit of changing decision attribute

from low to high, algorithm continues. Selecting attributes

and dividing table will be continued until FF value of the

selected attribute becomes less than ()P L H . In this step

more dividing the table may cause losing some cost-

effective action rules. After stopping the branching process

algorithm will extract all cost-effective action rules from

resulted tables in leaves of action tree. Then it is possible to

sort them based on their net profit and select the most cost-

effective ones.

IV. CONCLUSION

Actionable knowledge discovery is almost a new and

quite necessary concept in knowledge engineering and

action rules are one of the most effective actionable

knowledge. So that action rule mining has attracted a lot of

attentions recently.

Define EndTables as a global empty set of tables;

CEARDM (T, Attributes, CostMatrixes) {

 Input:

 T: Table of instances

 Attributes: Set of all attributes

 CostMatrixes: Set of all Cost Matrixes of attributes

Output:
 print all cost-effective action rules

 IV = an empty list of attributes ;

 for each A Attributes do

 FFA = minimum value of CMA ;

 if (() Ap L H FF ) then

 Add A to IV

 Sort IV descending based on the FF values ;
 UnMarked = IV;

 Marked = an empty list of attributes ;

 CEAT (T , UnMarked , Marked) ;
 CEAR (CostMatrixes) ;

}

CEAT (T , UnMarked , Marked) {

 if (∃ ri, rj∈ rows of T that decision value of ri ≠ decision value of rj)

then

 A= first attribute of UnMarked;
 NV= number of different values of attribute A in T

 while (A ! = null && NV < 1) do
 Move A from UnMarked to Marked;
 A = next attribute of UnMarked;

 if (A ! = null) then
 Move A from UnMarked to Marked;

 for each vi ∈ set of different values of attribute A in T do

 t = empty table;

 Add to t each ri ∈ rows of T that have vi or null value for attribute

A;

 CEAT (t , UnMarked , Marked);
 else

 Add T to EndTables ;

}

CEAR (CostMatrixes) {

 for each table t in EndTables do
 for each row ri of t with decision value of L do

 for each row rj of t with decision value of H do

 AR = Construct an action rule by Algorithm1;
 NP = Calculate the net profit of AR by Eq. (1);

 if (NP > 0)

 Print AR as a cost-effective action rule;

}

Algorithm2: Cost-Effective Action Rule Discovery Method

A B C D E F Z

1 1 2 1 2 L

2 2 2 1 L

1 1 1 L

 2 2 2 1 H

 1 1 1 H

A B C D E F Z

1 1 2 1 2 L

1 1 1 L

 2 2 2 1 H

 1 1 1 H

A B C D E F Z

2 2 2 1 L

 2 2 2 1 H

 1 1 1 H

A B C D E F Z

1 1 1 L

 2 2 2 1 H

 1 1 1 H

A B C D E F Z

1 1 2 1 2 L

1 1 1 L

 1 1 1 H

A B C D E F Z

2 2 2 1 L

 2 2 2 1 H

A B C D E F Z

 2 2 2 1 H

 1 1 1 H

Figure 2. Cost_effectve action tree for discussed example

In this work we introduced cost-effective action rules and

presented a new method for discovering them. Cost-

effective action rules in spite of traditional action rules

consider cost of an action in addition to its profit. For

handling this we considered a cost matrix for each attribute

and integrate it into action rule mining process.

Our presented method can integrate more background

knowledge into mining process and therefore can find more

useable actions. The detailed algorithm along with simple

examples has been brought in this paper to show how the

new method works.

REFERENCES

[1] I. Witten, E. Frank. “Data Mining, Practical Machine Learning Tollas
and Techniques”, Morgan Kaufman, 2005.

[2] K. McGarry, “A Survey of Interestingness Measures for Knowledge
Discovery”. The Knowledge Engineering Review, pp. 39-41, 2005.

[3] B. Liu, W. Hsu, and Y. Ma. “Identifying non-actionable association
rules”. ACM New York, NY, USA, 2001.

[4] Q. Yang, J. Yin, C. Ling, and Rong Pan, “Extracting Actionable
Knowledge from Decision Trees”, IEEE Transactions on Knowledge
and Data Engineering, VOL. 19, NO. 1, pp. 43-56, January 2007.

[5] Q. Yang, J Y. Ling, T. Chen, “Postprocessing Decision Trees to
Extract Actionable Knowledge", Proceedings of the Third IEEE
International Conference on Data Mining, IEEE, pp. 685-688, 2003.

[6] K. Wang, Y. Jiang, A. Tuzhilin, “mining actionable patterns by role
models”, Proceedings of the 22nd International Conference on Data
Engineering, IEEE, 2006.

[7] L-S. Tsay, Z W. Ra´s, " E-Action Rules ", Post-Proceeding of
FDM’04 Workshop Advances in soft Computing, Springer, Berlin
Heidelberg New York, pp. 277-288, 2006.

[8] L-S Tsay, Z W. Ras, “Action rules discovery: system DEAR2,
method and experiments”, Journal of Experimental & Theoretical
Artificial Intelligence, Vol. 17, No. 1–2, pp. 119–128, 2005.

[9] Z W. Ra´s, L-S Tsay, “Mining E-Action Rules, System DEAR”,
Studies in Computational, pp. 289-298, 2008.

[10] Z W. Ra´s, A. Wieczorkowska, “Action rules: how to increase profit
of a company”, Principles of Data Mining and Knowledge Discovery,
Proceedings of PKDD’00 (Eds: DA. Zighed, J. Komorowski, J.
Zytkow). Lyon, France, LNCS/LNAI, No. 1910, Springer, Berlin
Heidelberg New York, pp. 587–592, 2000.

[11] H. Geffner, J. Wainer, “ Modeling action, knowledge and control. In:
ECAI 98”, Proceedings of the 13th European Conference on AI, (Ed:
Prade H). Wiley, New York, 532–536, 1998

[12] Z. Pawlak, “Rough sets-theoretical aspects of reasoning about data
Algorithms for Packet Classification”, Kluwer, Dordrecht, 1991.

[13] B. Liu, W. Hsu, S. Chen, “Using general impressions to analyze
discovered classification rules”, of KDD97 Conference. AAAI,
Newport Beach, CA288 L.-S. Tsay and Z.W. Ra´s, 1997.

[14] Z. Pawlak, “Information systems – theoretical foundations”,
InformationSystems Journal, Vol. 6, pp. 205–218, 1981.

[15] Z. Zhu, J. Gu, W. Yang, X. Li, “Toward Domain-Driven Data
Mining”, Intelligent Information Technology Application Workshops,
International Symposium, IEEE, pp. 44-48, 2008.

[16] L. Cao, “Domain Driven Data Mining”, International Conference on
Data Mining Workshops, IEEE, pp. 74-76, 2008.

[17] J. Han, M. Kamber, “data mining : concepts and techniques”, 2nd
ed., Morgan Kaufman, 2006.

B=1 D=2 D=1

T5

B=2

A=2 A=1

T2

T1

T3 T4 T6 T7

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4731857
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4731857

