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______________________________________________________________________ 

 

Abstract 

 

The aim was to assess the treatment efficiencies of experimental storm water 

detention (extended storage) systems based on the Atlantis Water Management Limited 

detention cells receiving concentrated runoff that has been primary treated by filtration 

with different inert aggregates.  Randomly collected gully pot liquor was used in stead 

of road runoff.  To test for a ‘worst case scenario’, the experimental system received 

higher volumes and pollutant concentrations in comparison to real detention systems 

under real (frequently longer but diluted) runoff events.  Gravel (6 and 20 mm), sand 

(1.5 mm), Ecosoil (inert 2 mm aggregate provided by Atlantis Water Management 

Limited), block paving and turf were tested in terms of their influence on the water 

quality.  Concentrations of five-day @ 20°C ATU biochemical oxygen demand (BOD) 
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in contrast to suspended solids (SS) were frequently reduced to below international 

secondary wastewater treatment standards.  The denitrification process was not 

completed.  This resulted in higher outflow than inflow nitrate-nitrogen concentrations.  

An analysis of variance indicated that some systems were similar in terms of most of 

their treatment performance variables including BOD and SS.  It follows that there is no 

advantage in using additional aggregates with high adsorption capacities in the primary 

treatment stage. 

 

Keywords: Biochemical oxygen demand; Detention; Gully; Nitrate; Road runoff; Storm water. 

 

_______________ 

*Corresponding author.  Tel. +44-131-6-506780.; fax: +44-131-6-506554.  E-mal address: 

m.scholz@ed.ac.uk (M. Scholz). 

 

 

1.  Introduction 

 

1.1.  Sustainable Drainage Systems 

 

‘SUDS’ is the acronym for Sustainable (Urban) Drainage System (British English) or 

also known as Best Management Practice (American English).  A singular or series of 

management structures and associated processes designed to drain surface runoff as part 

of a sustainable strategy to predominantly alleviate capacities in existing conventional 

drainage systems in an urban environment is defined as SUDS (Butler and Davies, 

2000; CIRIA, 2000; Scholz, 2006; SEPA, 1999). 
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New developments proposed for Brownfield sites or on the periphery of urban 

developments may be unable to obtain planning permission, if existing local sewers 

have no spare capacity for storm water drainage, and if the storm water discharge from 

the proposed site cannot be controlled.  In the absence of suitable watercourses that can 

accommodate direct storm water discharges, alternative technologies such as ‘at source’ 

storm water storage and detention systems are required (Butler and Davies, 2000; 

Scholz, 2006). 

Many existing catchments in Scotland (e.g., Glasgow and Edinburgh), which are 

served by combined sewerage, have the potential to increase local sewer capacity by 

disconnecting storm water at other sites within developed parts of the catchment 

(D’Arcy and Frost, 2001).  Diversion of urban runoff before it enters the combined 

sewer into locally based storage devices such as the Atlantis Water Management 

Limited detention cell system has been shown to be a viable approach in many cases 

(Butler and Davies, 2000; CIRIA, 2000; Scholz, 2006). 

Optimising the maintenance of SUDS structures is currently one of the greatest 

management problems.  Mowing grass and removing litter and debris are the most time-

consuming and therefore costly maintenance tasks (Jeferies et al., 1999; McKissock et 

al., 1999; Scholz, 2003). 

Maintenance of all public above-ground SUDS structures is usually the responsibility 

of the local authority (The Stationary Office, 1998).  These above-ground structures are 

defined as swales, ponds, basins and any other ground depression features.  In contrast, 

the maintenance of below-ground SUDS structures is usually the responsibility of the 

local water authority.  Below-ground SUDS structures include culverts, infiltration 
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trenches, filter strips and below-ground detention systems (Butler and Davies, 2000; 

CIRIA, 2000; Nuttall, 1998; Scholz, 2006). 

Storm water runoff is usually collected in gully pots that can be viewed as simple 

physical, chemical and biological reactors.  They are particularly effective in retaining 

suspended solids (Bulc and Slak, 2003).  Currently, gully pot liquor is extracted once or 

twice per annum from road drains and transported (often over long distances) for 

disposal at sewage treatment works (Butler et al., 1995; Memon and Butler, 2002).  A 

more sustainable solution would be to treat the entire road or car park runoff locally in 

potentially sustainable storm water detention systems such as below-ground storage 

systems and storm water ponds (Guo, 2001) reducing transport and treatment costs.  

Furthermore, runoff treated with storm water detention systems can be recycled for 

irrigation purposes. 

Below-ground storm water storage and detention systems are defined as a sub-

surface structure designed to accumulate surface water runoff, and where water is 

released from as may be required to increase the flow hydrograph.  The structure may 

contain aggregates with a high void ratio or empty plastic cells and act also as a water 

recycler or infiltration device (Butler and Parkinson, 1997; Scholz, 2006). 

A below-ground storm water detention system comprises a number of components 

forming a structure that is designed to reduce storm water flow.  The system captures 

surface water through infiltration and other methods.  The filtered storm water is stored 

below-ground in a tank.  The water is often cleaned and filtered before it is infiltrated or 

discharged to the sewer or watercourse via a discharge control valve.  The system 

benefits include runoff reduction of minor storms, groundwater recharge and pollution 
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reduction.  This detention system is predominantly applied in new developments 

(Scholz, 2006). 

The effect of varying organic loading rates on the treatment performance of the 

complex biomass within most filter systems used for primary treatment is unknown.  

Moreover, an experimental study is required to assess the passive treatment 

performance of storm water detention systems. 

 

1.2.  Project purpose 

 

The aim is to advance knowledge and understanding by formulating design 

guidelines for vertical-flow storm water detention systems treating road runoff 

predominantly by extended storage in a cold climate such as the Southeast of Scotland.  

The objectives are to assess 

1. the function of turf (absent versus present) and different aggregates such as Ecosoil 

as components of a primary treatment filtration stage before the below-ground 

detention systems; and 

2. the overall passive treatment performance of vertical-flow storm water detention 

systems. 

 

 

2.  Materials and methods 

 

2.1.  System design and operation 
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Five detention systems (Table 1 and Fig. 1) were located outdoors at The King’s 

Buildings campus (The University of Edinburgh, Scotland) to assess the system 

performance during a relatively cold spring and summer (31/03-19/08/04; Table 2).  

Inflow water, polluted by road runoff, was collected by manual abstraction with a 2 l 

beaker from randomly selected gully pots on the campus and the nearby main roads. 

Five storm water detention systems based on plastic cells (boxes with large holes) 

wrapped in standard inert geotextile were used.  Virtually any geotextile complying 

with the corresponding national standard could be used.  Each system had the following 

dimensions: height = 85 cm, length = 68 cm and width = 41 cm.  Two plastic cells on 

top of each other made up one detention system (Fig. 1).  The bottom cell (almost 50% 

full at any time) was used for water storage only.  The top cell contained the aggregates.  

Different packing order arrangements of inert single size aggregates and plant roots 

were used in the systems (Table 1) to test for the effects of gravel (6 and 20 mm 

diameter single size layers), 1.5 mm diameter sand, 2 mm diameter Ecosoil, block 

paving and turf on the water treatment performance.  Apart from System 5, all 

remaining systems were unplanted.  Systems 2 to 5 contained additional media: System 

2 contained sand.  System 3 comprised sand and Ecosoil.  System 4 contained sand, 

Ecosoil and block paving.  Finally, System 5 comprised Sand, Ecosoil and turf.  In 

comparison to all other systems, natural aeration of System 4 was restricted due to block 

paving. 

The filtration system was designed to operate in vertical-flow batch mode.  Manual 

flow control was practised.  Gully pot liquor compares well with concentrated road 

runoff (by a factor of at least 30 depending on gully pot spacing), and was used in the 

experiment as a ‘worst case scenario’ liquid replacing road runoff.  All detention 
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systems were approximately twice per week watered with 10 l gully pot liquor as slow 

as possible, and drained by gravity afterwards to encourage air penetration through the 

soils (Table 1) (Cooper et al., 1996; Gervin and Brix, 2001).  The relative quantity of 

gully pot liquor used per system was approximately 3.6 × the mean annual rainfall 

volume to simulate a ‘worst case scenario’.  The hydraulic residence times were in the 

order of one hour.  Biodegradation was enhanced by encouraging natural ventilation of 

the aggregates from the top via the natural air, and from the bottom via the air pocket 

above the storage water and between the aggregates (Fig. 1).  Considering industrial-

scale systems, vertical ventilation pipes should be installed to encourage passive 

ventilation as well. 

 

2.2.  Analytical methods 

 

The five-day @ 20 °C ATU biochemical oxygen demand (BOD) was determined in 

the inflow and outflow water samples with the OxiTop IS 12-6 system 

(Wisenschaftlich-Technische Werkstätten (WTW), Weilheim, Germany), a manometric 

measurement device.  The measurement principle is based on measuring pressure 

differences estimated by piezoresistive electronic pressure sensors.  Nitrification was 

suppressed by adding 0.05 ml of 5 g/l N-Allylthiourea (WTW Chemical Solution No. 

NTH 600) solution per 50 ml of sample water. 

Concerning the analysis of nutrients in the liquid phase, oxidised aqueous nitrogen 

was determined in all water samples as the sum of nitrate-nitrogen and nitrite-nitrogen.  

However, nitrite-nitrogen concentrations were significantly low (data not shown).  

Nitrate was reduced to nitrite by cadmium and determined as an azo dye at 540 nm 
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(using a Perstorp Analytical EnviroFlow 3000 flow injection analyser) following 

diazotisation with sulphanilamide and subsequent coupling with N-1-

naphthylethylendiamine dihydrocloride (Allen, 1974). 

Ammonia-nitrate and ortho-phosphate-phosphorus were determined by automated 

colorimetry in all water samples from reaction with hypochlorite and salicylate ions in 

solution in the presence of sodium nitrosopentacyanoferrate, and reaction with acidic 

molybdate to form a phosphomolybdenum blue complex, respectively (Allen, 1974).  

The coloured complexes formed were measured spectrometrically at 655 and 882 nm, 

respectively, using a Bran and Luebbe autoanalyser (Model AAIII). 

A Whatman PHA 230 bench-top pH meter (for control only), a Hanna HI 9142 

portable waterproof dissolved oxygen (DO) meter, a HACH 2100N turbidity meter and 

a Mettler Toledo MPC 227 conductivity, total dissolved solids (TDS) and pH meter 

were used to determine DO, turbidity, and conductivity, TDS and pH, respectively.  An 

ORP HI 98201 redox potential meter with a platinum tip electrode HI 73201 was used 

to measure the redox potential.  Composite water samples based on 2 litre of sample 

water taken randomly at a minimum of four sample locations and/or times were 

analysed.  All other analytical procedures were performed according to the American 

standard methods (APHA, 1998). 

Concerning the analysis of major nutrients in Ecosoil (aggregate supplied by 

Atlantis Water Management Limited), 2 ml sulphuric acid (strength of 98%, v/v) and 

1.5 ml hydrogen peroxide (strength of 30%, v/v) were used as an extraction media 

(Allen, 1974).  Approximately 0.1 g of each dried sample and the associated digestion 

media were placed in a tube and heated at 320°C for 6 h.  Aliquots were taken and 

digests were made up to 100 ml with distilled water. 
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For analysis of total nitrogen, the following procedure was adopted: Ammonium 

(present in the digest) reacts with hypochlorite ions generated by alkaline hydrolysis of 

sodium dichloroisocyanurate.  The reaction forms monochloroamine which reacts with 

salicylate ions in the presence of sodium nitroprusside to form a blue indephenol 

complex.  This complex is measured colorimetrically at 660 nm using a Bran & Luebbe 

autoanalyser (model AAIII). 

For analysis of total phosphorus, the following procedure was used: Orthophosphate 

(present in the digest) reacts with ammonium molybdate in the presence of sulphuric 

acid to form a phosphomolybdenum complex.  Potassium antimonyl tartrate and 

ascorbic acid are used to reduce the complex, forming a blue colour, which is 

proportional to the total phosphorus concentration.  Absorption was measured at 660 nm 

using a Bran & Luebbe autoanalyser (model AAIII). 

For the analysis of total potassium, the digest was analysed by a flame atomic 

absorption spectrometer (Unicam 919, Cambridge, UK) at a wavelength of 766.5 nm 

and with a bandpass of 1.5 nm.  Standards were prepared in 100 ml flasks using 2 ml 

concentrated sulphuric acid and 1.5 ml hydrogen peroxide (30% v/v) and made up to 

mark with de-ionised water.  Caesium at a concentration of 100 mg/l was added to both 

standards and digests to overcome ionisation. 

Metal concentrations were determined in the raw gully pot liquor and the outflow 

waters from the experimental rig on 16 June 2004.  Water samples for metal 

determinations were stored at -19°C until analysis. 

Concerning the analysis of Ecosoil and grass cuttings, composite samples (usually at 

least four sub-samples) were randomly collected and stored at -10ºC prior to analysis.  

After thawing, approximately 2.5 g of each sample was weighed into a 100 ml digestion 
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flask to which 21 ml of hydrochloric acid (strength of 37%, v/v) and 7 ml of nitric acid 

(strength of 69%, v/v) were added.  The mixtures were then heated on a Kjeldahl 

digestion apparatus (Fisons, UK) for at least 2 h.  After cooling, all solutions were 

filtered through a Whatman Number 541 hardened ashless filter paper into 100 ml 

volumetric flasks.  After rinsing the filter papers, solutions were made up to the mark 

with deionised water.  The method was adapted from the section 'Nitric Acid-

Hydrochloric Acid Digestion’ (APHA, 1998). 

An Inductively Coupled Plasma Optical Emission Spectrophotometer (ICP-OES) 

called TJA IRIS and supplied by ThermoElemental (USA) was used to analyse selected 

wastewater, Ecosoil and grass cutting samples.  The purpose was to economically 

screen samples to determine various trace element concentrations and potential 

contaminants.  Analytical precision (relative standard deviation) was typically 5-10% 

for three individual aliquots. 

No replicates were analysed unless stated otherwise in the standard methods (APHA, 

1998).  However, replicate samples were stored in the freezer, and revisited for specific 

variables where unexplained outliers were determined.  If required these outliers were 

either replaced or ignored. 

 

 

3.  Results and discussion 

 

3.1.  Comparison of costs 

 



 11 

The overall capital and maintenance costs were estimated for each detention system 

for the first year of operation.  Maintenance included litter removal and grass cutting, 

and was based on an area of 1000 m2.  Material prices were requested for a volume of 

100 m3 per aggregate to obtain realistic figures for a scaled-up detention system 

(industrial operation size).  It follows that the five system configurations have 

standardised cost ratios of approximately 1.0 : 1.1 : 1.2 : 1.3 : 1.6 based on Edinburgh 

prices in March 2004. 

The actual prices are subject to negotiations and fluctuations on the market (i.e. 

labour costs, quantities ordered and transportation costs).  Costs for sand, gravel, 

Ecosoil and block paving are likely to be similar to their transportation costs (e.g., 

between £20 and £35 per m3) for most small sites.  Moreover, block paving costs 

depend heavily on the expenditure for skilled labour; i.e. a square meter may require up 

to 30 min laying time depending on the type of block paving and specifications for the 

corresponding purpose.  Turf may be as cheap as £1.5 per square metre.  The detention 

cells provided by Atlantis Water Management Limited may be sold for £4 per cell 

depending on the distributor.  However, the corresponding installation costs are 

considerable higher.  A detention cell system for a medium sized car park (500 to 1000 

m2) in Edinburgh, for example, costs between £5,000 and £15,000 depending on the 

specific site, specifications and contractor. 

 

3.2.  Inflow water quality 

 

Table 2 summarises the inflow water quality.  The standard deviations for all inflow 

parameters (except for DO, pH and temperature) are high (Table 2) due to the random 
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selection of gully pots and seasonal variations (Butler and Parkinson, 1997; Scholz, 

2004). 

The gully pot liquor was less polluted in summer than in spring.  For example, BOD, 

SS and turbidity in summer were 42, 33 and 46% lower, respectively (Table 2).  There 

are various reasons for this including the observation that the higher temperature in 

summer compared to spring results in a faster biodegradation rate within the gully pot 

(Table 2).  Moreover, the retention time of the gully pot liquor in summer is likely to be 

longer than in spring due to less frequent rainfall events.  A longer retention time 

correlated positively with a higher biodegradation rate (APHA, 1998; Butler and 

Davies, 2000; Scholz, 2004). 

 

3.3.  Comparison of outflow water qualities 

 

The overall filtration performance figures are summarised in Table 3 that should be 

compared with Table 2.  Figure 2 shows ‘real’ inflow and outflow concentrations for all 

detention systems for BOD, SS and nitrate-nitrogen, respectively.  Considering the 

relatively high standard deviations of most inflow water quality variables, and the only 

indirect relationships between inflow and outflow concentrations over time (i.e. buffer 

function of the large storage tank), it would be misleading to show mean outflow 

concentrations. 

Reduction efficiencies for BOD and SS (Table 3) are comparable to findings 

reported elsewhere (Bulc and Slac, 2003; Scholz, 2004) for highway runoff treatment 

with constructed wetlands.  The reductions of BOD (Table 3 and Fig. 2a) were 

acceptable for most systems, if compared to minimum American and European 



 13 

standards for the secondary treatment of effluent.  Biochemical oxygen demand in 

contrast to SS (Table 3 and Fig. 2a,b) outflow concentrations did not exceed the US 

thresholds of 30.0 mg/l, respectively (Tchobanoglous et al., 2003).  However, some 

European standards or those of individual regional agencies (Cooper et al., 1996; Lim et 

al., 2003; Shutes et al., 2001) are more stringent; e.g. BOD <20 mg/l.  The BOD 

outflow concentration was also lower than the UK standard for secondary treated 

wastewater of 20 mg/l (Table 3). 

A regression analysis has shown that BOD, ammonia-nitrogen, nitrate-nitrogen and 

ortho-phosphate-phosphorus can be estimated with conductivity and total dissolved 

solids using a second order polynomial equation.  For example, concerning BOD, 

nitrate-nitrogen and ammonia-nitrogen with conductivity, the corresponding coefficient 

of determination (r2) for Filter 4 are 0.60, 0.71 and 0.76, respectively.  The application 

of these relationships for internal water quality control purposes is likely to result in the 

reduction of sampling effort.  However, statistical relationships between other variables 

were not significant. 

Furthermore, it has been suggested that mature and viable microbial biomass, in 

contrast to aggregates with high adsorption capacities (e.g., Ecosoil) and turf, is 

responsible for the high overall filtration performances (Cooper et al., 1996; Scholz and 

Martin, 1998).  However, it is difficult to classify objectively a biological system as 

mature without having undertaken intensive microbiological work. 

Finally, analysis by ICP-OES of selected inflow and outflow samples for a suite of 

cations showed that all waters generally contained low concentrations of heavy metals.  

Measured elemental concentrations were either low (barium, calcium, magnesium and 

manganese), close to the detection limit of 0.014 mg/l for iron, for example, and for 



 14 

most heavy metals (e.g., aluminium, copper and cadmium) below the detection limit 

(0.2, 0.029 and 0.1 mg/l, respectively).  Dissolved zinc (detection limit: 0.006 mg/l) was 

the pollutant measured with the highest corresponding concentration.  The mean inflow 

concentration for zinc was 0.14 mg/l and the corresponding outflow concentrations 

were 0.07 mg/l (standard deviation: 0.05 mg/l). 

 

3.4.  Ecosoil and turf 

 

The commercial product Ecosoil is rather an inert inorganic aggregate than an 

organic soil.  The analysis shows that it does not contribute to elevated nutrient 

concentrations due to very low total nitrogen, total phosphorus and total potassium 

concentrations of 65, 46 and 1367 mg/kg, respectively.  In comparison, a recent soil 

quality analysis for areas in Glasgow, where SUDS were considered for 

implementation, indicated total nitrogen, total phosphorus and total potassium 

concentrations of 1612, 605 and 4562 mg/kg (Scholz et al., 2005).  It follows that 

Ecosoil does function only as a very weak fertiliser, and that it is therefore unlikely to 

contribute to eutrophication after the release of the treated storm water to the nearby 

watercourse. 

Furthermore, Ecosoil contained only trace amounts of heavy metals (except for 

aluminium): 1036, 24 and 7 mg/kg dry weight of aluminium, zinc and nickel, 

respectively.  All other metal concentrations were below the detection limit of the 

instrument.  However, even the aluminium concentrations are similar to values reported 

elsewhere for urban soil (Scholz et al., 2005). 
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The influence of turf (Filter 5; Fig. 1) on the organic matter content of the outflow 

was studied.  The BOD and SS concentrations within the outflow from the planted 

system compared to the unplanted gravel and sand systems were similar (Tables 2 and 

3).  However, BOD in the outflow of System 5 was lower compared to all other 

systems. 

Moreover, grass on top of Filter 5 (Fig. 1) was cut when the length was greater than 

10 cm for optical reasons and to reduce the overall nutrient load.  Total nitrogen, total 

phosphorus and total potassium concentrations were 3001, 640 and 6909 mg/kg fresh 

weight.  The presence and harvesting of grass seemed to have a positive effect on the 

overall nitrate-nitrogen outflow concentration that was lower for System 5 if compared 

to the remaining systems (Tables 2 and 3; Fig. 2c). 

 

3.5.  Analysis of variance 

 

Table 4 summarises analysis of variance findings for selected water quality outflow 

variables concerning selected detention system combinations.  The overall data sets 

were also sub-divided into seasonal data sets. 

The threshold for statistically significant findings is P<0.05.  It follows that pairs of 

data associated with P≥0.05 can be regarded as not significantly different.  For example, 

the most simple and complex systems (System 1 and Systems 4 or 5, respectively; Table 

1) are similar in term of their BOD and SS removal efficiencies. 

 

3.6.  Nutrient transformations 
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Ammonification, nitrification and denitrification are the three dominant nitrogen 

transformations that were partly quantified by measuring ammonia-nitrogen and nitrate-

nitrogen (Tables 2 and 3).  Ammonification is the conversion from organic-nitrogen to 

ammonia-nitrogen.  Ammonia-nitrogen is used by micro-organisms and turf (Filter 5; 

Fig. 1) for new biomass development (Memon and Butler, 2002).  This explains the 

higher reduction of ammonia in planted compared to unplanted storm water detention 

systems (see above and Tables 2 and 3). 

Ammonification is slower in anaerobic than in aerobic aggregates because of the 

reduced efficiency of heterotrophic decomposition in anaerobic environments.  

Therefore, it was important to drawdown the water table completely after watering to 

allow oxygen to penetrate into the deeper filter-like layers of aggregates on top of the 

storage tank (Table 1).  Ammonification also depends on pH being within an optimum 

range of approximately 6.5 to 8.5 (Kadlec and Knight, 1996), which was the case 

throughout the experiment (see also Table 2). 

Furthermore, nitrification transforms ammonia-nitrogen to nitrate-nitrogen.  This 

transformation has two steps.  Ammonia-nitrogen originates from decomposed grass, 

organic litter (e.g., leaves and faeces) and dead microorganisms (e.g., bacteria and 

protozoa).  It was therefore important to cut and harvest turf (grass cuttings) regularly.  

Nitrification is important because turf takes up nitrate-nitrogen preferentially to 

ammonia-nitrogen (Tables 2 and 3).  However, this transformation requires oxygen 

during the drawdown periods.  Denitrification is the process in which nitrate-nitrogen is 

reduced to gaseous nitrogen.  This transformation is supported by facultative anaerobes.  

These organisms are capable of breaking down oxygen-containing compounds such as 

nitrate-nitrogen to obtain oxygen in the anoxic environment that is likely to have 
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occurred at the stagnant bottom of the storage tank and within the less well aerated 

layers of aggregates (see above and Table 1) during warm periods.  However, Fig. 2c 

indicates that the denitrification process was not completed.  It follows that the retention 

times were likely to be too short. 

 

 

4.  Conclusions 

 

Five-day @20°C biochemical oxygen demand (BOD) outflow concentrations were 

below the UK threshold of 20 mg/l for secondary treated wastewater.  The storm water 

detention system did show signs of overloading resulting in relatively high suspended 

solids (SS) and nitrate-nitrogen concentrations, and further treatment would be required.  

Moreover, denitrification was not completed, and longer retention times are therefore 

suggested.  Nitrate-nitrogen was lower in the outflow of the planted system (turf on the 

top). 

Gully pot liquor (concentrated storm water runoff) in relative quantities exceeding 

three times the mean annual rainfall was used for all systems.  Therefore, it is likely that 

the SS concentration would be much lower in the field under real in comparison to the 

tested ‘worst case scenario’ conditions. 

An analysis of variance indicated that there was no significant difference between 

most systems in terms of their treatment performance (e.g., BOD and SS) despite of 

their different set-ups.  It follows that all systems regardless of their pre-treatment 

function as covered wastewater stabilization ponds. 
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Sampling effort can potentially be reduced for internal water quality control purposes 

by using relationships derived from a regression analysis between expensive variables 

that can be substituted by low-cost ones.  For example, BOD can be replaced by 

conductivity for internal control purposes. 

Ecosoil did contain relatively low concentrations of nutrients and metals (except for 

aluminium).  It follows that higher investment costs for more complex systems are not 

justified based on a water quality analysis alone.  However, further research concerning 

the potential hydraulic and structural benefits of additional aggregates such as Ecosoil is 

required. 
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Table 1 
Packing order of the storm water detention systems; all build ing materials are inert 

Height 
(mm) 

System 1 System 2 System 3 System 4 System 5 

861-930 
(top) 

Air Air Air Air 

791-860 Air Air Air 

Block paving and 6 
mm gravel (within 
spaces) Turf 

751-790 Air Air 1.5 mm sand 
and 2 mm 
Ecosoil 

1.5 mm sand and 2 
mm Ecosoil 

1.5 mm sand 
and 2 mm 
Ecosoil 

711-750 Air Sand 1.5 mm sand 
and Ecosoil 

1.5 mm sand and 2 
mm Ecosoil 

1.5 mm sand 
and 2 mm 
Ecosoil 

661-710 6 mm gravel 6 mm gravel 6 mm gravel 6 mm gravel 6 mm gravel 
451-660 20 mm 

gravel 
20 mm 
gravel 

20 mm gravel 20 mm gravel 20 mm gravel 

437-450 1.5 mm sand 1.5 mm sand 1.5 mm sand 1.5 mm sand 1.5 mm sand 
431-436 Standard 

geotextile 
Standard 
geotextile 

Standard 
geotextile 

Standard geotextile Standard 
geotextile 

201-430 Air Air Air Air Air 
0-200 
(bottom) 

Water Water Water Water Water 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table
Click here to download Table: ste_wetpol_scholz_detention_rev_tables_040606.doc

http://ees.elsevier.com/stoten/download.aspx?id=35090&guid=a50deb2e-4238-4971-9985-2a14c59234d0&scheme=1


 23 

Table 2 
Gully pot liquor (inflow to systems): water quality variables (31/03-19/08/04) 

Variable Unit Number of samples Mean SDa Mean (springb) Mean (summerc) 
BODd mg/l 30 37.8 55.30 50.3 29.4 
Nitrate-nitrogene mg/l 34 1.0 1.54 0.5 1.4 
Ammonia-nitrogen mg/l 34 2.1 1.85 2.4 1.9 
Ortho-phosphate-phosphorus mg/l 34 0.2 0.12 0.1 0.2 
Suspended solids mg/l 30 596.5 1430.40 725.6 483.5 
Total solids mg/l 30 442.8 848.58 311.4 518.9 
Turbidity NTU 35 81.3 81.67 108.0 58.7 
Dissolved oxygen mg/l 33 3.2 1.47 2.9 3.3 
pHf - 35 6.99 0.286 6.79 7.16 
Redox potential mV 35 178.0 110.62 106.2 238.5 
Conductivity µS 35 224.7 223.25 338.5 128.9 
Temperature (air) ºC 34 18.0 3.92 16.2 19.4 
Temperature (gully pot) ºC 34 17.4 4.66 14.6 19.7 

astandard deviation; b31/03-21/06/04; c22/06/04-19/08/04; dfive-day @ 20°C N-Allylthiourea biochemical oxygen demand; 
einc ludes nitrite-nitrogen; fcalculation based on measurement values; na = not availab le. 
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Table 3 
Relative reduction (%) of outflow variab les (31/03/04-19/08/04) with respect to the inflow variables shown in Table 2 

 change (%) per wetland systema 

Vari- System 1 System 2 System 3 
ables Ab Bc Cd Ab Bc Cd Ab Bc Cd 

BODe 92 95 89 93 95 90 90 90 90 
NO3

f
 -1372 -1483 -1338 -1667 -832 -1918 -695 -482 -759 

NH4
g
 81 74 87 89 86 93 86 78 94 

PO4
h
 -74 16 -120 -64 12 -102 -33 12 -55 

SSi 78 67 92 80 69 94 79 69 93 
Turbj 91 92 90 90 91 89 84 81 88 
Vari- System 4 System 5 
ables Ab Bc Cd Ab Bc Cd 

BODe 93 93 92 94 96 92 
NO3

f
 -1020 -564 -1158 -393 -853 -254 

NH4
g
 86 76 96 89 82 96 

PO4
h
 -56 8 -88 -74 2 -113 

SSi 80 69 93 78 66 94 
Turbj 85 81 90 71 83 51 

a

in
outin (%)  100)((%)  Change ×−= , where in=inflow and out=outflow; boverall mean (31/03/04-19/08/04); cmean of 

the spring (31/03/04-21/06/04); dmean of the summer (22/06/04-19/08/04) efive-day @ 20ºC N-Allylthiourea 
biochemical oxygen demand (mg/l); fnitrate-nitrogen (mg/l); gammonia-nitrogen (mg/l); hotho-phosphate-phosphorus 
(mg/l); isuspended solids (mg/l); jturbidity (NTU). 
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Table 4 
Analysis of variance for selected outflow combinations (31/03/04-19/08/04) 

Variab les System 1 and System 4 System 1 and System 5 System 4 and System 5 
 Ya SGb SRc Ya SGb SRc Ya SGb SRc 

BODd (mg/l) 0.91 0.22 0.06 0.08 0.60 0.07 0.25 0.16 0.84 
Suspended solids (mg/l) 0.88 0.92 0.63 0.99 0.99 0.80 0.89 0.87 0.94 
Total solids (mg/l) 0.56 0.07 0.64 0.36 0.34 0.75 0.89 0.36 0.50 
Turbidity (NTU) 0.01 0.00 0.44 0.00 0.03 0.00 0.01 0.60 0.00 
Dissolved oxygen (mg/l) 0.94 0.73 0.07 0.61 0.84 0.03 0.60 0.65 0.50 
pH (-) 0.66 0.99 0.27 0.21 0.90 0.00 0.22 0.92 0.03 
Redox potental (mV) 0.33 0.82 0.02 0.61 0.78 0.01 0.63 0.62 0.97 
Conductivity (µS) 0.00 0.00 0.02 0.01 0.00 0.07 0.71 0.73 0.56 

ayear (overall data); bspring; csummer; dfive-day @ 20 ºC N-Allylthiourea biochemical oxygen demand; includes nitrite-
nitrogen.  Note: Only P-values shown in italic indicate systems that are different from eachother. 
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Figure captions 

 

Fig. 1.  Experimental storm water detention systems (The King’s Buildings campus; 

The University of Edinburgh) on 1 July 2004: a) Systems 1 to 5; b) System 4 (partly 

covered with block paving); c) System 5 (covered with turf). 

 

Fig. 2.  (a) Five-day @ 20°C N-Allylthiourea biochemical oxygen demand, BOD 

(mg/l), (b) suspended solids, SS (mg/l), and (c) nitrate-nitrogen (mg/l) concentrations 

for the inflow and outflows of Systems 1 to 5. 

Figure captions
Click here to download Figure: ste_wetpol_scholz_detention_rev_figcaps_040606.doc

http://ees.elsevier.com/stoten/download.aspx?id=35091&guid=08ce1157-083e-4459-b809-de5c9f3d33da&scheme=1
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Aggregates 

Water storage tank 

Inflow from the top 

Figure 1
Click here to download Figure: ste_wetpol_scholz_detention_rev_fig1_040606.doc

http://ees.elsevier.com/stoten/download.aspx?id=35092&guid=8c37c8a0-8a64-458c-99e8-0f7654eb32af&scheme=1
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To you as the Guest Editor: 
• The case study (including associated figures) and Table 1 have been removed. 
• The paper has been shortened. 
• All referee comments have been addressed (see below). 
 
To Reviewer No. 1: 
• Standard aggregates (e.g. sand and gravel) and building materials (e.g., geotextile) were 

used.  They have been specified further, if essential to the interpretation of the findings.  
The referee should appreciate that inert materials themselves have virtually no direct 
impact on the water quality. 

• Analytical detection limits for heavy metals have been listed. 
• A brief discussion concerning real costs has been included. 
• Composite samples were described further. 
• Grading curves for sand and gravel are trivial (i.e. virtually meaningless) considering that 

single sizes were used as specified in the text and corresponding table. 
• The paragraph concerning the regression analysis has been clarified, and unsubstantiated 

statements have been deleted.  It follows that more diagrams are not necessary anymore. 
 
To Reviewer No. 2: 
• The filter material and the type of system have been detailed further in the abstract to make 

it more informative. 
• Mean temperatures have been summarized in Table 2.  An appropriate reference to Table 2 

has been added in the text. 
• The method statement on the redox potential has been corrected as suggested. 
• Section 3.1 discusses now actual costs and should therefore be part of the section on 

results and discussions (i.e. not materials and methods).  Referees should appreciate that it 
is virtually meaningless to specify aggregate costs considering that they depend and widely 
fluctuating variables such as location, labour and transport costs, for example.  Differences 
might vary by one or two orders of magnitude! 

• Statistical methods are now stated in the section on methods. 
• As discussed in the text, it would be meaningless to state mean outflow concentrations 

considering the high standard deviations of most inflow water quality variables, and that 
inflow and outflow are not directly related to each other considering the buffer capacities 
of the large below-ground detention systems.  Moreover, the paper would be unnecessarily 
long, and similar information would be presented at least twice (text, Tables 2 and 3, and 
Figure 2). 
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