<table>
<thead>
<tr>
<th>Title</th>
<th>Diffraction of fractal light: New frontiers for the mathematics of edge waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Mylova, M, McDonald, GS and Christian, JM</td>
</tr>
<tr>
<td>Type</td>
<td>Conference or Workshop Item</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/id/eprint/29306/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2013</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Diffraction of fractal light: new frontiers for the mathematics of edge waves

M. Mylova, G. S. McDonald, and J. M. Christian

Materials & Physics Research Centre, University of Salford, U.K.

Email: m.mylova@edu.salford.ac.uk

Keywords: edge waves, Fresnel diffraction, fractal light, energy theme

The diffraction pattern produced by a plane wave (i.e., a perfectly uniform wavefront) scattering from an infinite hard edge is well-described by the Fresnel integral [1]. Such one-dimensional (1D) edge waves [see Fig. 1(a)] turn out to be truly elemental spatial structures in linear optical systems in the sense that patterns produced by other apertures [such as a slit – see Fig. 1(b)] can be decomposed into a sum of two interfering edge waves. Our group has previously established that such waves also play a fundamental role in the exact mathematical description of diffraction patterns generated from uniform illumination of polygonal apertures [2], whereby one superposes the waves from all constituent edges (each of which has, crucially, a finite length). Here, we report on the first steps taken toward considering a related but distinct physical problem, namely how a fractal light wave incident on an infinite edge is diffracted in both the near and far fields. Our method is based upon a Fresnel-type prescription, generalizing earlier analyses [1,2] to accommodate an illuminating field that comprises a spectrum with many distinct components (each spatial frequency contributes a characteristic scale length to the incident pattern). Our results can be readily applied to other classic 1D and 2D systems such as slits and polygons, respectively.

Figure 1. Classic Fresnel edge-wave (intensity) patterns for (a) a single infinite edge, and (b) a slit (constructed from two single edges with a finite space between them). The shaded areas correspond to the geometrical shadow, where the field decays rapidly (in the absence of diffraction, the pattern would have zero amplitude in these regions).

References
