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Figure 54 Showing a) BJ vs. b curves with the uppebranches of the curves in colours
representingg = 1, 2 or 3 and the lower branches shown in black (it is just the upper
branches that are being considered at this point). b), ¢) and d) show the surface wave
solutions forg = 1, 2 and 3 respectively. h& interface is represented by a white line, and
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Figure 55 Showing a) BJ vs. b curves with the upper branches of the curves in colours
representingg = 1, 2 or 3 and the lower branches shown in black (iuss fhe upper
branches that are being considered at this point). b), ¢) and d) show the surface wave
solutions forg = 1, 2 and 3 respectively. The interface is represented by a white line and
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Figure 56 Showing a) BJ vs. b curves with the upper branches of the curves in colours
representingg = 1, 2 or 3 and the lower branches shown in black (it is just the upper
branches that are being considered at this poib)) c) and d) show the surface wave
solutions forg = 1, 2 and 3 respectively. The interface is represented by a white line and
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Figure 57 Showing a) BJ vs. b curves with the upper branches of the curves in colours
representingg = 1, 2 or 3 and the lower branches shown in black (it is just the upper
branches that are being considered at this point). b), ¢) and d) show the surface wave
solutions forg = 1, 2and 3 respectively. The interface is represented by a white line and
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Abstract
This thesis det&s an exploration of the behaviour of spatial optical solitons -(self
collimated, selistabilising light beams) interacting with the interface between classes of

nonlinear dielectric materials.

Chapter 1 gives the theoretical background to the thesisroglirding the soliton concept,
material interfaces and the Helmholtz model.

The second chapter discusses the reflection and refraction characteristics of soliton beams
incident on the planar boundary between dissimilar egbinotic materials. The
deploynent of Helmholtz soliton theory allows for the simultaneous consideration of: (i)
arbitrary angles of incidence, reflection and refraction (relative to the interface), and (ii)
finite beam waists (as opposed to infiniteljde plane waves). Despite an ablance of

literature concerning solitons at interfaces, there appears to be no published research
addressing refraction in the presence of capimtic optical nonlinearity (and certainly

none in arbitrannangle contexts). Excellent agreement is generfdund between

t heoretical predictions from a generalised

simulations.

In Chapter 3, these novel analyses have been complemented by further investigations into
other fundamental aspects of optical ref@etinamely Gooslanchen shifts and critical

angle prediction. Both aspects are the first of their kind in the -qubitic regime.

The fourth chapter considers surface wave propagation along the interface between two
dissimilar powetlaw materials; thigesearch has already contributed to a published peer

reviewed paperJ. M. Christiaret al, "Helmholtz bright spatial solitons and surface waves

at powerlaw optical interfaces,"Journal of Atomic, Molecular & Optical Physi@912

(2012), art. no. 13796.7 The chapter ab expands upon that paper by giving a more

detailed account of surface wave stability properties.

Chapter 5 provides an -epth computational study into beam propagation in coupled
waveguide arrays (materials whose refractive index is periodically pedfeand there
appears to be a link between the beam's critical angle and the depth of the modulation of

the array.
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1. Introduction

This thesis explores the behaviour of Helmholtz solitons {selfimating, selfstabilising
beams of light) at a variety of material boundaries.

The research in that whidiollows has only been possible because of the nature of the
materials considered they ae all nonlinear optical materials. This means that the
polarisation (dipole moment per unit volume) of the materials depends on the field strength
of the applied optical field (this is discussed further in secidnland se [1] for more
information). This in turn means that the refractive index of the mediudependent on

the intensity of the beam propagating through it, and this key feature which leads to

the existence of optical solitons and the Kerr effect, see sektidor further discussion

of this. Solitons are ubiquitous in naty® 3], this means that wherever an object or

material has an intensity depemdeefractive index, solitons can exist.

The materials which have been investigated in the following tehgpnclude; cubic
quintic (examples of which includsemiconductors AlGaAR4], doped glasses Cgsa «

[5, 6], the polydiacetylene patao | ue ne s ul fpaanjgated polymefBI, T S 6
chalcogenide glass A§s-Se[10-12], and transparent optical materifls3]), powerlaw

(a more generalised example of a Kerr materi@ve been shown to exist in
semiconductors, InS[d.4] and GaAs/GaAlA$15], doped filter glasses CgSa .« [16] and

liquid crystals such as MBBAL7]) and coupledvaveguide arraygexample of solitons in
materials with CWA properties include long protejis], 1d ionic crystald19] and

electrical lattice$20)).

This thess marries analytical and numeal approachesn the investigation of soliton
behaviour at nonlinear interfacésan area of optics which still remains relatively under
investigated. The study is important in that it will give us a better understanding of the
properties of solitons anthe materials through which they travel advance of their
further use in optical technologig21-31]. This work means that we can identify potential
pitfalls in the developménof suchtechrologies, includingdatatransferand all optical

switching[3] without the need fomoreextensive (and costly) physical experiments.

This study is also novel in that it calls for the use ofribalinearHelmholtz approach to
modelling solibn behaviour. Using the Helmholtz equation over the nonlinear

Schrédinger equationsahas been done elsewh¢B2-43], provides moreabust results



and gives the oppdunity to explore soliton properties wheéimey propagatet arbitrary
angles- the advantages of Helmholtz soliton theory will be giveh.8

1.1 Spatial optical solitons

Spatial optical solitons are beams of fasght that can propagate in nonlinear optical
materials asmentioned a material whose refractive iex has a local intensitgependent
contribution They are seftollimating i.e. theyevolve with a stationary intensity profile
and uniform phase frag and sekstabilising in that they are robust against perturbations
These two key properties mean that solitons could be used to carry Basah future
optical device$21-31].

The selffocusing (and selflefocusing) of continuous wave (CW) beams in a bulk
nonlinear medium has been the subject of a number of earlier stpdids45]. A spatial
soliton is formed when an equilibrium point is found between the nonlinear effects of the

medium and the difactive effects of the beam. This is highlighted in the figure below:
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Figure 1 Showing how the equilibrium point between the focusing of the material and the diffraction of the beam

lead to a spatial soliton.



The formation of aoliton is possible in a nonlinear medium (such as a Kerrrhgieria)
because of the intensity dependeattskkeaf t he
lens, causinghe beam to focus, overcoming its natural tendency to diffract. This system

isa result of its own optical waveguide sini
index region because of the balance created by the conditions found in the[4fjstem

Before this response was discoverdds type of waveguide phenomenon wiasquently

purposely ceated in linear systems. This wdne by introducing aimcreasing refractive

index in the transvergegion occupied by the bedd)].

The work in this thesis explores the behaviour of beams created by ttiecssihg of
continuous wave beams, i.e. bright spatial solitons. While properties of beams created by
seltdefocusing (dark solitons)are certainly of interest (see he[85, 38, 43]) the
exploration of theibehaviour in nonlinear systems is beyond the scope of this thesis.

1.2 Geometries: single and multi-interface problems

The work in this thesis is based on two different types of interfaces. Theticsiuced
aresingle interfacesyhich appear in chapte2, 3and4. The single interface is a result of
two adjoining dissimilar matals, that is, two materials withniform nonlinear refractive
indexare either side ahe interface. Interfaces of this typave been investigated the
past[36, 40, 41, 43, 47-50], and a variety of interface phenomenon seen at them, including
GoosHanchen sliis [36, 42, 47] and surface wavep36, 51, 52]. In chapter5, the
interface investigated is a mudititerface[53-55], which means that the first materied
similar to those discussed abovumwever,the second medim is a oupled waveguide
array. The beam propagatingoim medium 1 to medium vill experience multiple
changes in waveguigddience multinterface Figure 2 highlights these twosituations

below:



Medium 1 Medium 2 Medium 1
uniform nonlinear uniform nonlinear uniform nonlinear
medium medium medium

Medium 2
periodic array

Figure 2 Showing the difference between singleand multi-interface problems.

1.3 The role of Helmholtz modelling

Undoubtedly the most popular method of modelling the propagation of spatial solitons is
the nonlinear Schrodinger (NLS) equation. This type of mdeié exhibited47-50, 56]

and explained1] in many publications, despite its inherent disadvantages. The NLS
eqguation is not the only way to model beams of this nature; the nonlinear Helmholtz
(NLH) approach, while remaining less commonly used, is developing dati&pu of
producing more reliable and less restrictive results.

The NLH equation, first used for modelling solitong3d], has been used extensively in a
variety of soliton based investtons[32, 34, 36, 37, 39-43]. The intrinsic advantages of
the NLH equation over the NLS equation are numerous and have led to its use in this

study. These advantages vii# set out here.

All studies exploring soliton behaviour which use the NLS as their governing equation
require the implementation of paraxial approximatidqag, 48]. Such a modelling
approach leads to a number of physical limitations implicit in the governing equation, and
restricts the general validity of conclusions thatym@e drawn about the refraction
properties of nonlinear beams. The NLS equation forces the assumption of the following

three criteria:



I.  the width of the beam is broad in comparison to the carrier wavelength;
ii. the beam is of moderate intensity;
iii.  the beam mst propagate very close to the reference direction.

In this research programme, Helmholtz soliton theory has been deployed to relax the third
restriction: broad beams of moderate intensity may now propagatéiaary angles of
incidence, reflection ancefraction with respect to the interfacerhis intrinsic advantage

of the NLH equation allows for a study of wider scope, and one which more accurately
reflects the actual properties of solitons in the physical waaltt theoretical and
computatioal mockls need to account fahis. The following section explains how we

can reach thaonlinearHelmholtz governing equation from first principles.

1.4 Nonlinear Maxwell's equations

As has been identified, the use of Helmholtz soliton theory has intrinsic adeaatver
other approaches. In this section, it will be shown how to arrive at the nonlinear

Helmholtz equation used throughout this thesis from first principles.

For a dielectric medium wher = 7H , Maxwell's equations may be writtes:

D B m%, (1.1)

pd & (12

b 3E =E, (1.3)
pt

PB & (1.4)

where v is the electric field vectorB is the magnetic field vecto is the electric
displacement vectort is the magnetic field strength vectamjs the permeability of free

spaceandt is time. In deriving a wave equation for the dielectric field,and B are
decoupled as a first step. This can be achieved by taking the curl of eqida8joand
substituting(1.1):



) 3( Dé‘) :%’% ,E (15)
which leads to
D3 DE) m= (L6)

Now usingan operator identity from vector calculus, namely
p3 DE) £ &)p GE, L7
it follows thatequation(1.6) becomes

.
- BE :m“—z. (1.8)
ut
The next step is to simplify the left hand side of equatio8) by replacing thed &term
with the constitutive relation that connedds to T through the polarisationP (and the

associated susceptibility tenspcy. Consider the general definitions:
Dt gE P, (1.9)
P1 Pt 4PV (1.10)

where P-and P™ are the linear and nonlinear polarisation vectmespectively andy is

the permittivity of free space When the linear response of the medium is isotropic
Pt=g PE, D=eE #" and e= g, ,where 11 +P¥and cis the linea
susceptability In nonlinear optics, the nonlinear optical response can often be described

by expressing the polarisation as a power series in the electric field strength:
P=g§ PEN + W1 BN VEX) %) ! (1.11)

where the secondand fourthorder polarisation terms only occur in honcentrosymmetric
crystals (crystals that do not display inversion symmeany therefore vanish in the
materials considered in this thegit]. By combining this constitutive relation with
equation(1.2) it follows that:
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Hence, even when the linear dielectric propertita host medium are uniforire. where
gradientsDeare zerg the divergenceb @is generally no-vanishing. To proceed
homogeneous lear mediums assumedso thatbe =0. Then by substituting equation

(1.12) into equation, it obtains that:

o ~ 2 o NL
Dge-l B 2 2E Dméf=|2E %ED- (1.13)
c e * Mt 5§
which leads to
2 o NL
e #;TE BE 2 (B @'Y Y (1.14)
ht e i
By assuming the carrier wave has
E(x,z ) =E(x Jexp(-ivt) B*(x Jexp( i) (1.15)

whereequation(1.15) is the continuous wave solution ands the angulafrequency. e

nonlinear polarisation is
PY(x,z)=P" (x Jexp(-ivt) B *(x Jexp( i) (1.16)
then equatioril.14) becomes

1
e

-m& @€) - B (DPB)O ). (117)

If © is linearly polarised in thg direction and propagates along théirection, andif,

thereforethe B () @“‘E')) term is neglected, it emerges that

WE pE w
7 +T(2 +?'W;Z(E)E G (1.18)

Wheren is the general refractive indé€icluding linear and nonlinear effectdgquation

(1.18) is the nonlinear Helmholtz equatiomhich is the starting point to the analysis of all

the research in the following chapters.



An assumption is made that the tinearities are nonresonantWhilst this assumption
excludes the consideration ebme nonlinear effects, such as frequency doubling, these
effects are not relevant togtwork done irthis thesis[57-59]; the effects of interesare
described byquatios discussed in sectidh2



1.5 Thesis outline

In order to methodically describe and explain bright soliton behaviour ariaty of
interfaces, the thesis will be structured as follows.

Chapter2 discusses the reflection and refraction characteristics of soliton beams incident
on the planar boundary between dissimilar ciguatic materials. Theleployment of
Helmholtz soliton theory allows for the simultaneous consideration of: (i) arbitrary angles

of incidence, reflection and refraction (relative to the interface), and (ii) finite beam waists
(as opposed to infinitelwide plane waves). Despitan abundance of literature
concerning solitons at interfaces, there appears to be no published research addressing
refraction in the presence of cuigjaintic optical nonlinearity (and certainly none in
arbitraryangle contexts). Excellent agreementgenerally found between theoretical
predictions from a generalised Snel |l 6s

simulations.

In Chapter 3, these novel analyses have been complemented by further investigations into
other fundamental aspects of opticafraction, namely Goeklanchen shifts and critical
angle prediction. Both aspects are the first of their kind in the -qubitic regime.

The fourth chapter considers surface wave propagation along the interface between two
dissimilar powetlaw materias; this research has already contributed to a published peer
reviewed papef36]. The chapter also expands upon that paper by giving a more detailed

account of surface wave stability properties.

Chapter 5 provides an -tepth computational study into beam propagation in coupled
waveguide arrays (materials whose refractive index is periodically patterned) and there
appears to be a link between the beam's critical angle and the depth of the modulation of

the array.

The thesis concludes with a summary of findings and suggestionsusding the

implications of this novel research.



1.6 References

10.

11.

12.

13.

14.

15.

16.

17.
18.
19.
20.
21.
22.
23.
24.

25.

R.W. Boyd,Nonlinear Opticsl992, London: Academic Press.

Z. Chen, M. Segev, and D.N. Christodoulid@ptical spatial solitons: historical overview and
recentadvancesReports on Progress in Physics, 20/3. DOI: 086401.

Y.S. Kivshar and G.l. StegemaS8patial Optical Soliton Guiding Light for Future Technonogies.
Optics & Photonics News, 20023(2): p. 5963.

S. Tanev and D.l. PushkardSplitary weve propagation and bistability in the normal dispersion
region of highly nonlinear optical fibres and waveguid®ptics Communications, 199741(5-6):

p. 322328.

L.H. Acioli, A.S.L. Gomes, J.M. Hickmann, and C.B.d. Araujemtosecond dynamics of
seniconductordoped glasses using a new source of incoherent Kgiglied Physics Letters, 1990.
56(23): p. 22792281.

P. Roussignol, D. Ricard, J. Lukasik, and C. Flytzadey results on optical phase conjugation in
semiconductedoped glassedourna of the Optical Society of America B, 198%1): p. 513.

B.L. Lawrence and G.I. Stegemahwo-dimensional bright spatial solitons stable over limited
intensities and ring formation in polydiacetylene p#oaiene sulfonateOptics Letters, 1998.
23(8): p. 591593.

B.L. Lawrence, M. Cha, W.E. Torruellas, G.I. Stegeman, S. Etemad, G. Baker, and F. Kajzar,
Measurement of the complex nonlinear refractive index of single cry&ialgne sulfonate at 1064
nm.Applied Physics Letters, 19984(21): p. Z732775.

B.L. Lawrence, W.E. Torruellas, M. Cha, M.L. Sundheimer, G.l. Stegeman, J. Meth, S. Etemad,
and G. Baker]dentification and Role of TwBh ot on Ex c i t «€ahjugdtedaPolgner. i n
Physical Review Letters, 19943(4): p. 597600.

G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala, and F. Sanchez,
Experimental and theoretical study of higheder nonlinearities in chalcogenide glass&ptics
Communications, 2002191-6): p. 427433.

F. Smektala, C. Quemard, \Couderc, and A. Barthélémyonlinear optical properties of
chalcogenide glasses measured bgcZn. Journal of NorCrystalline Solids, 2000274(1-3): p.
232-237.

K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, and M. Minakkiagar and nonlinear optida
properties of AgAsSe chalcogenide glasses for-afitical switching.Optics Letters, 200R9(3):

p. 265267.

C. Zhan, D. Zhang, D. Zhu, D. Wang, Y. Li, D. Li, Z. Lu, L. Zhao, and Y. Nigrd- and fifth
order optical nonlinearities in a new stdlolium derivativeJournal of the Optical Society of
America B, 200219(3): p. 369375.

J. Mathew, A. Kar, N. Heckenburg, and I. Galbraithme resolved selfefocusing in InSb at room
temperaturelEEE Journal of Quantum Electronics, 198%1): p. 94-99.

D.S. Chemla, D.A.B. Miller, and P.W. SmittNonlinear optical properties of GaAs/GaAlAs
multiple quantum well material: phenomena and applicati@yical Engineering, 19824(4): p.
556-564.

S.S. Yao, C. Karaguleff, A. Gabel, C. Fortenty, C.T. Seaton, and G.l. Stegemaftrafast
carrier and grating lifetimes in semiconductdoped glasse#\pplied Physics Letters, 19886(9):

p. 801803.

D. Mihalache, M. Bertolotti, and C. Sibilia&\lonlinear wave propagation in planar structures
Progress in Optics, 19827(1): p. 229313.

A.S. Davydov,Solitons in molecular systenihysica Scripta, 19720(3-4): p. 38%7394.

T. Holstein,Studies of polaron motiornnals of Physics, 1958(1): p. 325343.

P. Marquié, J.M. BilbauJtand M. RemoisseneQbservation of nonlinear localized modes in an
electrical lattice.Physical Review E, 19951(6): p. 61276133.

G.S. McDonald and W.J. Firti#ll-optical switching in a nonlinear resonatalournal of Modern
Optics, 199037(4): p. 613626.

G.S. McDonald and W.J. FirttSpatial solitarywave optical memoryJournal of the Optical
Society of America B, 1990(7): p. 13281335.

G.S. McDonald and W.J. Firttgwitching dynamics of spatial solitary wave pixdturnal of the
Optical Society of America B, 19930(6): p. 10811089.

M. Brambilla, L.A. Lugiato, F. Prati, L. Spinelli, and W.J. FirtBpatial Soliton Pixels in
Semiconductor DeviceBhysical Review Letters, 1997911): p. 20422045.

W.J. Firth and G.K. HknessCavity solitonsAsian Journal of Physics, 19983): p. 665677.

10



26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

W.J. Firth and A.J. Scroggi€®ptical Bullet Holes: Robust Controllable Localized States of a
Nonlinear Cavity Physical Review Letters, 19966(10): p. 16231626.

L. Spindli and M. Brambilla, Signal amplification by means of cavity solitons in semiconductor
microcavities European Physics Journal D, 198@1): p. 523532.

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. LugiaBpatial solitons in semiconde
microcavities Physical Review A, 199&8(3): p. 25422559.

G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, M. Perrini, and L.A. LugiaZayity solitons
in passive bulk semiconductor Microcavities. |. Microscopic and modulational ingebiliburnal
of the Optical Society of America B, 19985(11): p. 20832094.

G. Tissoni, L. Spinelli, M. Brambilla, T. Maggipinto, .M. Perrini, and L.A. Lugid@@ayity solitons
in passive bulk semiconductor microcavities. Il. Dynamical propertielscamtrol. Journal of the
Optical Society of America B, 19996(11): p. 20952105.

L.A. Lugiato, L. Spinelli, G. Tissoni, and M. Brambilldlodulational instabilities and cavity
solitons in semiconductor microcavitie®ournal of Optics B Quantum Semiconductors, 1999.
1(1): p. 4351.

P. ChamorreéPosada, G.S. McDonald, and G.H.C. Nd&vwppagation Properties of Nonparaxial
Spatial SolitonsJournal of Modern Optics, 20087(11): p. 18771886.

P. ChamorréPosada, G.S. McDonald, and G.H.C. N&lenparaxial beam propagation methods.
Optics Communications, 200192(1i 2): p. £12.

P. ChamorréPosada, G.S. McDonald, and G.H.C. N&lenparaxial solitonsJournal of Modern
Optics, 199845(6): p. 11111121.

P. ChamorréPosada and G.S. McDddaHelmholtz Dark Solitonptics Letters, 20028(10): p.
825827.

J.M. Christian, E.A. McCoy, G.S. McDonald, J. SancBerto, and P. Chamor®osada
Interaction of Helmholtz bright spatial solitons with poview optical interfaces Journal of
Atomic and Molecular Physics, 2012012 DOI: 137967.

J.M. Christian, G.S. McDonald, and P. ChamdPasadaBistable Helmholtz solitons in cubic
quintic materials Physical Review A, 20076, DOI: 033833.

J.M. Christian, G.S. McDonald, and P. @Giaro-PosadaBistable dark solitons of a cubguintic
Helmholtz equationPhysical Review A, 201@1, DOI: 053831.

J.M. Christian, G.S. McDonald, R.J. Potton, and P. ChanrRosadddelmholtz solitons in power
law optical materialsPhysical RevievA, 2007.76, DOI: 033834.

J. SéncheLurto, P. Chamorr®Posada, and G.S. McDonaltlelmholtz solitons at nonlinear
interfacesOptics Letters, 20032(9): p. 11261128.

J. SancheZfurto, P. Chamorr®osada, and G.S. McDonalonlinear interfaces:intrinsically
nonparaxial regimes and effectdournal of Optics A: Pure and Applied Optics, 2008. DOI:
054015.

J. SancheLurto, P. Chamorr®osada, and G.S. McDonalGiant GoosHanchen shifts and
radiatiorrinduced trapping of Helmholtz soliterat nonlinear interfacesOptics Letters, 2011.
36(18): p. 36053607.

J. SancheLurto, P. Chamorrposada, and G.S. McDondliack and gray Helmholtz Kerr soliton
refraction Physical Review A, 20183, DOI: 013828.

B. Bendow, P.D. Gianino, arid. Tzoar,Theory of continuous/ave beam propagation in nonlinear
optical waveguideslournal of the Optical Society of America, 1981(6): p. 656663.

D. Burak and W. NasalskiGaussian beam to spatial soliton formation in Kerr medipplied
Optics, 1994.33(27): p. 639%6401.

Y.S. Kivshar and G.P. AgrawalQptical Solitons From Fibers to Photonic Crysta?903,
California, USA: Academic Press.

A.B. Aceves, J.V. Moloney, and A.C. Neweltheory of lightbeam propagation at nonlinear
interfaces. |. Equivalenparticle theory for a single interfac&hysical Review A, 198894): p.
18091827.

A.B. Aceves, J.V. Moloney, and A.C. Neweltheory of lightbeam propagation at nonlinear
interfaces. Il. Multipleparticle and multiplenterfaceextensionsPhysical Review A, 1983894):
p. 18281840.

A.B. Aceves, J.V. Moloney, and A.C. NewdReflection and transmission of sitused channels
at nonlinear dielectric interface®ptics Letters, 1988.3(11): p. 10021004.

A.B. Aceves,J.V. Moloney, and A.C. NewellSnell's laws at the interface between nonlinear
dielectrics.Physics Letters A, 1988294): p. 231235.

A.W. Snyder and H.T. Trar§urface modes of power law nonlineariti®©ptics Communications,
1992.98(4-6): p. 309312.

11



52.

53.

54.

55.

56.

57.

58.

59.

J-G. Ma and Z. ChenNonlinear surface waves on the interface of two-Kemr-like nonlinear
media.l[EEE Transactions on Microwave theory and Techniques, %86): p. 924930.

D. Mandelik, H.S. Eisenberg, Y. Silberberg, R. Morandotti, ah8. Aitchison BandGap
Sturucture of Waveguide Arrays and Excitation of Flodtleth SolitonsPhysical Review Letters,
2003.90, DOI: 053902.

D. Mandelik, R. Morandotti, J.S. Aitchison, and Y. Silberb&ap Solitons in Waveguide Arrays
Physical Rview Letters, 20082, DOI: 093904.

A.A. Sukhorukov, D. Neshev, W. Krolikowski, and Y.S. Kivsh&lonlinear BlochWave
Interaction and Bragg Scattering in Optically Induced Lattidesysical Review Letters, 20042,
DOI: 093901.

A.B. Aceves, P Varatharajah, A.C. Newell, E.M. Wright, G.I. Stegeman, D.R. Heatley, J.V.
Moloney, and H. Adachihar&article aspects of collimated light channel propagation at nonlinear
interfaces and in waveguide®urnal of the Optical Society of America B, 199(®): p. 963974.

P. ChamorréPosada and G.S. McDonaldme domain analysis of Helmholtz soliton propagation
using the TLM methodournal of Nonlinear Optical Physics & Materials, 2(R. DOI: 1250031.
Y.S. Kivshar and B. Luthebavis,Dark optical solitons: physics and applicatiorghysics Reports,
1988.298(1): p. 81197.

R.A. Sammut, A.V. Buryak, and Y.S. Kivshavodification of solitary waves by thifdarmonic
generationOptics Letters, 19922(1): p. 13881390.

12



2. Singleinterfacesl: cubic-quintic systems

2.1 Introduction

This section will focus specifically on the refraction sgatial solitons at the interface
between dissimilar cubiquintic materials(see Figure 3). Examples ofsuch materials
include some semiconducte.g. AlGaAs[1] and doped filter glasses, e.g. G8&«[2,
3]. This is the first timethat Helmholtz soliton thery has been used to investigate
refraction withthe universalcubicquintic optical nonlinearity Previous analysebave
considered only Kertype [4-6] and more recently, powelaw [7] materials (where
Helmholtz solitonswere shown to wellescribe nonparaxial i.e., arbitrary angle,
refraction) The motivationhereis to derive anovel Snell's lawthat may be used to
predict the arbitraryangle refraction of finiteamplitude beam in the most general
nonlinearmedium contextto date The problem isfirst analysed mathematically, and
theoretical predictions asibsequentlyested computationally.

n' =nl +a, |E|2 +v |E|4 7'?:: = 7-?;3 +a, |E|: +V, Er

Medium 1 Medium 2

Figure 3. Schematic diagram showing a typical setp for an interface between dissimilar cubiequintic materials,
and the parameters which can be varied across the interface. The values of these parameters will define whether
the interface is linear, nonlinear, or mixed.

2.1.1 Nonlinear Polarisation
The materl beng investigated in chapteBsand3 has the refractive indeseen inFigure
3, which will be discussed more 2.1 Within the assumions of scalar wave optics,

the nonlinear polarisation for such a material can be written as:

13



P=gS PE 4% HE' E % ©Lg’ E{ (2.1)

(DeD~ (D~

whereE is the (complex)electric field, c* is the linear susceptibilitywhile ¢ and ¢

are the third and fifth order nonlinear susceptibilitiespectively The first term on the
RHS of (2.1) is the linear polarization term and the last two terms are the nonlinear
polarisation terms. It is the last twerms in eqgetion (2.1) which give mataals with the
refractive index2.4) the name 'cubiquintic' [8].

2.1.2 Defining Interface Problems

A nonlinear material is one with a contribution to the refractive indekthe formny. =
nnL(E), where E is the local electric field amplitudéa more detailed mathematical
treatment will be given igection2.2.7). Theincidentbeam traved from mediumj = 1 to
mediumj = 2, where the values ok (the linear part of the refractive indexg; and r3
(nonlinearity coefficientsyary across the interfadgtrictly, it is the abrupt changes in
these parameters that define the interface itseWhenny = ng; (no change in linear
refractive index)the interface may be classified menlinear Similarly, whena [ ax/a;

= landnl m/m =1, the interfaces classifiedas linear. Mixed interfaces have, in

general, arbitrary changes in the medium parameters

2.1.3 Literature Review

The seminal papsrdealing with spatial solitons at interface®re by Acevesand co
workers nearly 30 years ag$9-13]. This extensive body of resear@xplores the
behaviour of beams at Ketype interfaces within theestrictionof paraxial wave optics
(seesection1.3). Refaence[9] develops an equivalent particle theowyherebythe
soliton is modelledas aspatiallyaveragedparticle moving in an equivalent potential
(whose shape depends upon, for instance, material mismatcWésije this paper has
provided general backgroundading, theparaxial analysis therein is not particularly
relevant to the fully angular (i.e., Helmholmnparaxidl problem. For instance,samilar
description of Helmholtz solitons is of limited practical use i t has no simple
me ¢ h a n erpretadionainchrovides reasonably accurate predictionly at moderate

anglesof incidence

The theoretical cornerstone for this chapter is to be found in thesdap&ancheZurto,

ChamorrePosada, and McDonald, 6]. This workinvestigates the behaviour of solitons

14



at Kerrtype interfaces but, crucially, avoids the use of the paraxial approximdtidhis

way, the first beamrefraction modelbased onan inhomogeneous nonlineblelmholtz
equationcould bedeveloped. Tair approach provides an analytical platform that allows

for angles (incidence, reflection, and refractionpoy size (with respect to the interface)

to be investigated. The paper also reports a novel generalisatbma | | 6 s | aw,
includes a generic multiplicative correction factor. Computer simulations are used to test,
and confirm, the appropriateness of the model. Results show excellent agreement between

theoretical predictions and full numerical calculations

The same authors have more recently published a faljpwapef5]. This articlefocuses
on two particular phenomena under these conditions: nonlinear external refraction and

total internal reflection, again, good agreement is shiostween the theory and numerics.

The final paper that plays a fundamental role in this chapter is by Christian, McDonald,
and Chamorrd?osadd14]. This article reports the first exact analytical bright solitons for

a Helmholtz equation with cubiguintic nonlinarity. Mathematical and computational
analyses are used to investigate the stability properties of the new Helmholtz solitons

against perturbations to the beam shape.
2.2 Solitons at Interfaces

2.2.1 Model Equation

Underpinningthe subsequent analysssthe contiuouswave scalar electric field,

E(xz =B x exp( -iv) €( x}pext ) (22)

wherex andz are the spatial ardinates in the mediunb,is the time coordinatandy is

the optical @ngulaj frequency. This representation makes sure ghe¢mains real, as
should be the case. If the spatial part of the electric field is slowly varying on the scale of
the freespace optical wavelength, then E(x,2 must satisfy anonlinear Helmholtz

eqguation on each side of the material boundary:

’E w
‘:Zz +%2E ?nf(E)E €3 (23)

wherej = 1, 2 denotes the medium ané the vacuum speed of light. The total refractive

indexn; is routinely taken to be the sum of two terms= ng; + nnj(E), whereny is the

linear index of the medium at frequenay, and ny(E) is a (smal) field-dependent

15
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contribution Since equatiof2.3) is quadratic im, it follows thatn? = ng? + 2ngnu. (E) +
nn%(E). However since e j(E)[/ng << O(1), the last ternmay besafelyneglected sohat
n? & no? + 2ngni(E).  For cubiequintic materials, the nonlineguart of the refractive

indexmay bewritten asnyj(E) = (2ng) (&|EF + n|E|*), and hence
2 4
ntrg e[ #g. (2.4

Here, g; is the cubic (or Kerr) coefficient, which is taken to be positive, and the

quintic correction term which can be either positive or negftidp

To facilitate a straightforwad analysis with earlier workg®-13, 15, 16|, a carrierwave
component, exji¥;2), can be factored out &i{(x,2):

E(x 2= B x gexp( ik} (25)

Here, Eo is a real constank; = (W/c)no;, andu(x,2) is the dimensionless envelope. The
target is now to find an equation far It can be shown (se&ppendix B thatu satisfies

the inhomogeneous nonlinear Helmholtz equation,

2 2y .
it R iU e G T (L )l )y e
The longitudinal and transverse coordinates rawemalised according t@ ZLp; and

x ="'xfw, respectively, wherdp; = kawp/2 is the diffraction length of a reference
(paraxial)Gaussian beamf full waistw,. Since he validity ofequation(2.6) requiresel

/ Iwo << O(1) (i.e., thatbeam waists are much larger than the-gpace lightvavelength,
the inequalityk [ (Lkawo)® = /4 ne,* << O(1) is maintainedthroughout By measuring
the laboratory electric field in uits of Eo = (ng/kmlp)*? the small parameter
s [ mEy¥a;describeghe ratio of quintic to cubic nonlinear phasfeifts. TheHeaviside
unit functionH(3) is definedby H(3< 0) = 0 andH(3-> 0) = 1 (see kgure 2)so thatin the
domain of medium 1 equaion (2.6) is just the conventional cubguintic Helmholtz
equation[14]. The model is also supplemented thyee parameters that describe the
mismatch between thinear and nonlineapropertiesof the two medianote that only

relative changes are important)
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N

D11 g%

alﬁ, nt -2, (27 a,b&c
gn01 a

In the classic paraxial models (based upon the universal nonlinedgd®cfar equation),
the D parameter is absorbed into sst normalisation (the transverse coordinate is scaled
by a factor proportional tB"?). One immediate consequence of such a scaling is that only
those material configurations with > O (i.e.,ng2 < Np1) may be considered. It will be
shown shortly thata refraction regime of fundamental physical importance (namely,

external refractiof is automatically excluded from the paraxial domain.

H(9)

Medium 1 Medium 2

Medium 1

Figure 4. Schematic diagram showingrefraction at an interface. In the first medium, x is negative and the

Heaviside unit function H = 0. In the second mediumxis positive and H =1

2.2.2 Mathematical Method
The mat hemati cal procedure for deriving Sn

down into stages:

i.  Derive the exact analytical solitonlations in the two media,
ii.  Apply the continuity conditions at the interface,

iii. Exploit the geometrical relations to fin

Strictly, u and its normal derivative should be continuous across the interface. However,
enforcing thee two conditions in the context of scalar modelling can leagrtineous

predictions (mainly, that a finkeamplitude beam can never refract across the interface).
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The work of @nchezCurto et al. [4] showed that Helmholtzoditons at interfaces can be
very welldescribed by enforcing onghase continuitycross the interface.

2.2.3 Exact Bright Solitons
From equatior{2.6), the govening equations in each medium can be isolated as:

_ wu . op 1 2w e 4
Medium 1: k +Hi— +=— u u 0, (2.8)
R
Medium2: k|.12u +i—u ‘& A% 4u| u Mu 0 (29
' o ouz 2 ﬁx 2k ' '

On-axis soliton solutions of equatio(&8) and(2.9) may be sought using an ansatz:
a .z
Agl +Bcos C X exp — 2.10
u(x, = Agl HC)xg expic ) 2 s 2 (210

whereA, B, C andk; (the propagation constant) are real paramet&ubstituting equation
(2.10) into equationg2.8) and(2.9) yields

(2.11)

‘ 2k

where he £ sign in the phase flags the longitudinal semispropagation (forward or
backwards irg, respectively). The other solution parameters for the sol(2iaf) in each

medium are given ifablel:

Medium 1: Medium 2:
=R 21 8} | a(oer) # 24t 159)
B=14%s 4 B=1 422

c=2J26 28¢(1 % $)r'g c=2[2(b %) 2¢( a3+ n)@

Table 1 showing the parameters for the exact soliton solution.

To generate more general @kis solitons the following rotational transformation is

applied to solutiorf2.10) (which leaveghe parameter#, B, C and 6 unchanged)
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Direct: Inverse:

x-V z ., XtV z
1+ 2kV? 1+ 2kV?
_2kV x+ L _-2kV x+

Z 1

N1+ 2kV? 1+ 2kV'*?

V4

Table 2 showing the transformations needed to find theff axis solutions.

“y
2

> U™y

~

o Ty

v

Figure 5 Shows the two coordinate frames of the on, and off axis solutions.

The off axis solutionn medium 1 is

. )
_F 4b %I é 1+4knp° 7 m _éz

7 R LY ‘
u(X 3 %1+Bmccosrg QC(X,? @geng 1+2k\/inzc %/,nc X42=k %@Xp ng

(2.12)

whereBinc [ 1 +s ,(rdid tBe)peak intensity of the beafmc [ ro(2)[1 + (2/3)s 4]
is related to the propation constant of the corresponding paraxial solution, @adx,2)

= 2(2bn0)MA(XT Vincd)(1 + 20VinP)M2. Similarly, in medium 2,

U(X a:? 4bref %IZ
’ %1+ B, coshg Q,(x , 2 @y

(2.13)

o

cexpe 1 [ D WRBY £ B &7
é 1+ 2kV C 2/(+L'J c k

ref

whereBes [ 1 +1 sgrid 13 Yol2)[a + (2/3)n sof and Qred(X,2) = 2(2be) (X 1
Viei2)/(1 + 2kVief)M2. Thus, thencident and refracted soliton beafsslutions(2.12) and
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(2.13), respectively] have very similar mathematical structures. A key distinction is the

appearance of tHemear mismatch paraster D in the phase of the latter.

224 Uni versal Snell 6s Law

For simplicity, the mterface in the laboratory frame is aligned alongzbeis so that its
transverse position is always at= 0. The phase of solutiorf2.12) and (2.13) at the
interface (i.e., at-= 0) can be matched only when the incident and refracted b&feares a

commonlongitudinalsense Phase continuityhenensures that

1+2k (1€ §)r 1 - R+ (kr2 ar,)

, 214
1+ 2RV, 12 K 9
which can be rearranged to fivk? in terms ofVine? according to:
31 & 1+2kV2
vZ=v: &- 8 inc a, 2.1
ref inc @ 2‘*‘2/(0,(1'% 09 7 (2.19)
dt D2 kgl Ja& +,4r) { (2.16)

While equation (2.15) describessoliton refractionin terms of transverse velocitigm
normalised coordinatgsit is more instructive to consider propagationangles (in
laboratorycoordinates A beam with velocityV in the @ g) frameevolves at oblique
angled relative to the longitudinal axis in thg, ) frame Thefundamentatrigonometric

relations[17]:

\2kV
COSQinc ref = 1 ! Sin inc, ref = e, 1ot = (2.17)a,b
il 2 1 2
1+ 2k, 1+ 24V,

inc, ref inc, ref

leads to the compact result

tanqinc, ref =N 2 Xdinc, ref ' (2'18)

One of the fundamental pperties ofwave propagation ilelmholtztype modelss that
dnc and ger can be ofany magnitude even thoughk << O(1) [18]. By combining

equationg2.15 and(2.18), a uni versal Snell 6s | aw can

gn,, COS @ =Ny, COS (219
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&  1+2k g1 §)r

a

é+2kp( a2 n}r -)b

(2.20)

AN

Equationg2.19) and(2.20) arekey results of this researctiescribing soliton refraction in
cubicquintic systems. It is impatht to note that equatiof2.19) contains a single
multiplicative correction factogthat captures the interplay between material mismatches,

a finite beam waist, and system nonlinearity.

2.2.5 Critical Angles

Whendi,c = duri, the refracted soliton might be expected to travel along the interface (one
also expects surface waves to play amemole in understanding propagation properties in
such a regime). More formally, the conditiolRs = O at di,c = dit, When applied to

equation(2.19), leads to an algebraic prediction foettritical angle (seAppendix B:

D 2k (i1 -R 3+ v )-gp
=1

tang,, u -
"1 1 Da#g( ai+ nkryg

(2.22)

The existence of a critical angle requires the argumeneddbareoot in equatior{2.21)

to be nomnegative (e.g., whea = n=1 andD > 0). Inthe planewave limit, it would
seem reasonable for incident waves travellingdat= d.i: to be refracted along the
interface (as they are according to ray optics in linear sys{@®}3. In the more
complicated case of beams, diffraction (particularly in combination with system
nonlinearity) will inevitably lead to more complicatedve phenomena in the vicinity of

such critical points.

2.2.6 Interface Transparency

The interfaceis effectively transparent to the incident beam witkp = dinc. From
equation(2.19), it follows that the condition for interface transparencynis = no;, which

is equivalent tod= [Obtained by settin/;ef” = Vins in equation(2.16)]. Transparency

thus occurs when the linear and (peak) nonlinear refractive index mismatches cancel each
otherexactly It is interesting to note that the transparency condition (where the beam
passes through the interface unrefracted) is inheresattisfied by the 'no interface’
condition,[i.e., 0 = 0 nog snppn&=el (sincea, = a1), andn 1l<sincern )]

eventhough the two situations are physically different.
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2.2.7 Reflection and Refraction
When a beam encounters an interfagenerally one ofwo effectstend todominate the

system beaviour: reflectionor refraction

Reflection. Whenmedium 2 is less optically dense agpg < g, a refracted

beam generally cannotbe excitedi the incidentsoliton cannot penetrate
across the boundary into the second medium because this would demand
|cosges | > 1 In suchcase, thein-going beamwill often be totally internally
reflected Since the system at hargdhighly nonlinear,any beaminteraction

with the interface may generatadiation (i.e., lowamplitude diffracting
waveswith sufficient intensity to effectively setfap). Recent result§7]
havealso shown that in the presence of strong nonlinearity (e.g., ptawer
regimes), the incident soliton can simply break up into radiation close to the

critical angle.

Refraction. When(i) medium 2 is less opticallgense andjnc > Geit, Or (ii)
medium 2 is more optically densthe incident beammay berefraced at
angle ger = cos[(no/ go)cosgnd. Refractioncharacteristicsnay be sub
classifiedasinternal or external depending upon whether the outgoing beam
bends dward the interface or away from respectively feeFigure6). This
categorisation is most simply describaderms of the sign of/[see equation
(2.16)].

d<0 Vs> Ve SO thatge > gnc € External refraction
d=0 Vies= Ve SO thatge = gn. € Transparency condition

>0 Vi< Ve SO thatge < gnc € Internal refraction
External refraction is an intrirally nonparaxial regime, wherges can
easily violate the paraxial approximatienen under the simplest material

constraint (e.g., a linear interface wiigy > np;, and henc® < 0).

22



b)

inc ine

Medium 1 Medium 1

Figure 6. Schematic diagram showing (ajnternal refraction where the beam bends towards the interface and (b)
external refraction, where the beam bends away from the interface.

2.3 Simulating Solitons at Interfaces

The analysis in the preceding section captures the essence of soliton refsétttiorihe
phasecontinuity approximation However, the full complexity of the interface problem

can be addressed only through computer simulations. Such simulations will be undertaken
here using a suite of Matlab codes that integrate m@d®l numericallyand analyse the

datasetusing custom curwétting routines.

2.3.1 Numerical Methods
Outline of Algorithm

A brief description of the numerical methods used wolvrbe given. This description is

relevant to all the simulations carriedt for this thesis.

There are three initial steps to simulating the propagation of the beams in the longitudinal
directionz. Firstly, input conditions must be specifiedn this case a costype function

such asu(x,0) = A{1 + Bcosh[2()*?x]}*2. To approximate the solution after the first
step (of sizéD2), a split step method is used. This approach (even when syedgitan

only be deployed for Helmholtype models in the short term (in this case, a single
longitudinal step) as it proves to be insufficiently accuf2t®. The field at the second
step, and every step thereatfter, is calculated with a differdiffeeential algorithm. This
method requires information frorhd two preceding steps before it can be implemented
(hence why it cannot be used to find the field after fir&@ step). The difference

differential method has been shown to be a highly effective and efficient way to simulate
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beam propagation problems tfis type[20]. It replaces longitudinal derivatives with
their (centred) finite difference approximations, and the transverse diffraction operator is
implemented through the use of Fast Fourier Transforms.

Spatial Filtering

The continuum Helmholtz equatid2.6) has an elliptical plane wave dispersion relation
given by equatiorf2.22). Any spatial frequencids, on the associated computational grid

that fall outside this ellipse can result in an unphysical numerical instability; such spectral
components must hence be removed from the solution after each propagation step. A full
description of the spatial filterg condition traditionally used in homogeneous Helmholtz
type nonparaxial simations can be found in ref20]. Within the linear plane wave
approximation, spatial frequencies satisfykd > (k)max are eliminated using a tdpmt

function in Fourier space, where:

_4/(‘,[ 3D 7z %5
(kj)max_Dzz'l ¢ kgl

When necessary, equatiih22) can be easily augmented by a correction terrdf24) to

0]

D

—

| (2.22)

(DeD;

accommodate interface geometries.

2.3.2 Interface Geometiies

In section2.2, thematerial boundaryas alignedalong thez axisso that dlique incidence

was described in a frame where the ingoing beam was inclined atdapgédative to the

fixed interface Sucha choiceof relative orientations entirely arbitraryand made purely

for mathematical convenience (to facilitate simpler phase matching). In fact, simulating
model (2.6) with that particular configuration can lead to numeriddficulties arisng

from spatial filteringin combination withdensegrid discretisationand solution phase
samplingrequirementg4]. To avoid theseconplications, all computations have been
performedin the framewhere theincident solitonis on-axis andthe interface is rotated

relativeto the fixed input beaifseeFigure7).
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Medium 1

Figure 7a) Schematt diagram showing beam refraction at an interface ithe analysis in section 2. b) [®ws the
interface setup used in the computer simulationghe beam approaches the interface travelling directly down
the longitudinal axis, while the analytical problem onsiders the interface to be aligned along the
longitudinal axis.

2.3.3 Calculation of Refraction Angle
Before proceeding with simulations, a way must be found to extract the refraction angle
from the numerical das@t Referring toFigure 7b), the angular deviatiop from the

incident (straighthrough) line is related to the refraction anglg by:
Get = . - - (2.23
Therefore, it follows that

Lancyinc - tanj
1+tang,, tany

tang,, = tar( @ - J (2.24)

wherethe trigonometric addition formula has been used to obtain the farhaglat side of
equation(2.24). In the frame in which the computations are carried gutan be

identified with a transverse velocitythrough

tary = 2kv (2.25

By combining equation$2.25) and(2.24), it is straightforward tshow that
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2kV, .- N2 Kk
VoA = 2 2

= , (2.26)
1+J2kV, N2 kv
or equivalently,
V.-V
vV, =—"n 22
1+ 26V v (227

inc

Since simulations are always performed in the normalised frame of reference, the
numerical data can kenalysed to yield a value fer The desired anglg.: can then be
obtained from equatior(2.27) and(2.18).

In all simulations, the interface is orientatbng the linex + Vi,.z= 0 such that the centre
of the beam encounters the interfacezat x = 0. If the peak of the refracted solitds

supposed tonove along thérajectory
X-Vv z3%), (2.28)

thenit follows that the local velocity (far away from the interface in medium 2) may be

cakulated fronthe slope

dx
vi—, (2.29
dz
This result iscrucial foranalysing the mmerical data.
24 Si mul ations to test Snell s Law

The resultsin this sectiontest thepredictions of the nevb n e | | Gequatibné2i9)] [
against fullynonlinear numerical computations for a variety of interfac@$ie line g =

gnc (Mmarked on albf the following Snelttype plots)represents thezansparency condition
(wherel = 01 see sectior2.2.9; it differentiates between regimes involving internal
(below the line, i.edw < dinc) andexternal (above the line, i.dei> diy) refraction The

full interface problem is associated with a-dinensional parameter space that must

somehow be tamedror definitenesghe following parameters are chosen for simulations:

k= (/Mp)? (invere beam width Two typical values ofk are considerednamely,
2.5 10 * and 10® 10 %); both respect the inherent inequality for Helmholtz modelling [that
k<< O(1)].
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al a.a (ratio of cubicnonlinearity coefficieny). Valuesof a are chosen to be 0.5,0
or 2.0. The two nofnity cases represent a large change in the strength of the focusing
properties of the medium across the interface (a halving and doubling, respectively)

nl mlm (ratio of quintic nonlinearity coefficienkts Values ofr7 are cheen to beéd.5, 1.0
and 2.0so that therelative change in the quintic coefficienssthe same as that for the
cubic coefficients

s mEs%a; (ratio of cubic to quitic nonlinear phase shifts Typically, the quintic
contribution to selfocusing is asmall corredabn to the cubic (Kerr) effecf8]. The
competing cubiguintic nonlinear response can be used as a leaxtogy approximation

to a satuable intengy-dependent refractive ind¢8]. Here,s = +0.15 is use{l14].

ro(peak intensity Fors =-0.15 the bistability condition means that there are two values
of ro describing solutions with different peak intensities but the samevidth-at-half-
maximum: 7o © 1.3 andro © 4.14[14]. For s = +0.15 the corresponding soliton is

monostable and hasg © 0.87.

2.4.1 Linear Interfaces

lllustrative results fosoliton refraction at dinear interface are shown Figure8a) for a
relatively narrow beam (wher& = 2.510°). Generally, the agreement between
theoretical predictions [solid lineé ohtained from equation$2.19) and (2.20)] and
numerical data (points) is very goodkigure 8b) shows refraction for parameters with a
low angle of incidencégn,. = 1.0) andD = -0.01 @ relativelylarge step in refractive
index). Upon colliding with the interface, theeam splits into @redominantexternally
refractedcomponent (well described by the Snell lamgcompanied bg lower-amplitude
satellite structure (thissecondry component does not suve in the long term, having
insufficient energy to selirap and form a solitary waye The beam/interface interaction

also generatemdiationmodes that areeflectedback into medium 1

The true collision, as pdicted by solving equatiof2.6) numerically, is much more
complicated than the adiabassumptionof the analysidgs section2.2 (which allows

only for a single sttionary refracted beamsnd no radiation or reflected wavesjuch an

increase in complexity clearl vy -lagwpredictionr i s e
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and the true (computed) refraction angle. However, it eyasting to note [fronfrigure
8d) ] that t he g e n dawarkdictioniestildveladheredtoe Snel | 6s

Figure 8a) Shows a Snell's law plot for a linear interface.Figure 8b) Shows the 3d fpot for the point: D=-0.01 and

g = 1°. Figure 8c) Shows the 3d plot for the point:D = -0.005 andq = 1° andFigure 8d) Shows the 3d plot for the

point: D= 0.005 andq = 10°.

Figure8c) showsa similar example ofsoliton refraction but witld = - 0.005 (as opposed

to D = -0.01). With a smaller index stephet interaction is much 'cleanefar less
radiation is generated, and there is no secondary/satellite structure shadowing tredrefract
beam. In Figure8d) the beam is propagating with a larger angle of incidence. Here, the
beam can be seen to refract into the second medium without losing much radiation at the
interface, and so, the paimepresenting this refraction iRigure 8a) fits well with the

theory line.
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