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Abstract  

This thesis details an exploration of the behaviour of spatial optical solitons (self-

collimated, self-stabilising light beams) interacting with the interface between classes of 

nonlinear dielectric materials. 

Chapter 1 gives the theoretical background to the thesis by introducing the soliton concept, 

material interfaces and the Helmholtz model.  

The second chapter discusses the reflection and refraction characteristics of soliton beams 

incident on the planar boundary between dissimilar cubic-quintic materials.  The 

deployment of Helmholtz soliton theory allows for the simultaneous consideration of: (i) 

arbitrary angles of incidence, reflection and refraction (relative to the interface), and (ii) 

finite beam waists (as opposed to infinitely-wide plane waves).  Despite an abundance of 

literature concerning solitons at interfaces, there appears to be no published research 

addressing refraction in the presence of cubic-quintic optical nonlinearity (and certainly 

none in arbitrary-angle contexts).  Excellent agreement is generally found between 

theoretical predictions from a generalised Snellôs law and results from extensive computer 

simulations.   

In Chapter 3, these novel analyses have been complemented by further investigations into 

other fundamental aspects of optical refraction, namely Goos-Hänchen shifts and critical 

angle prediction.  Both aspects are the first of their kind in the cubic-quintic regime. 

The fourth chapter considers surface wave propagation along the interface between two 

dissimilar power-law materials; this research has already contributed to a published peer 

reviewed paper [J. M. Christian et al., "Helmholtz bright spatial solitons and surface waves 

at power-law optical interfaces,"  Journal of Atomic, Molecular & Optical Physics 2012 

(2012), art. no. 137967].  The chapter also expands upon that paper by giving a more 

detailed account of surface wave stability properties. 

Chapter 5 provides an in-depth computational study into beam propagation in coupled 

waveguide arrays (materials whose refractive index is periodically patterned) and there 

appears to be a link between the beam's critical angle and the depth of the modulation of 

the array. 
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The thesis concludes with a summary of findings and suggestions surrounding the 

implications of this novel research.  
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1. Introduction  

This thesis explores the behaviour of Helmholtz solitons (self-collimating, self-stabilising 

beams of light) at a variety of material boundaries.  

The research in that which follows has only been possible because of the nature of the 

materials considered ï they are all nonlinear optical materials.  This means that the 

polarisation (dipole moment per unit volume) of the materials depends on the field strength 

of the applied optical field (this is discussed further in section 2.1.1 and see [1] for more 

information).  This in turn means that the refractive index of the medium is dependent on 

the intensity of the beam propagating through it, and it is this key feature which leads to 

the existence of optical solitons and the Kerr effect, see section 1.1 for further discussion 

of this.  Solitons are ubiquitous in nature [2, 3], this means that wherever an object or 

material has an intensity dependent refractive index, solitons can exist. 

The materials which have been investigated in the following chapters include; cubic-

quintic (examples of which include semiconductors AlGaAs [4], doped glasses CdSxSe1-x 

[5, 6], the polydiacetylene para-toluene sulfonate or óPTSô p-conjugated polymer [7-9], 

chalcogenide glass Ag-As-Se [10-12], and transparent optical materials [13]), power-law 

(a more generalised example of a Kerr material, have been shown to exist in 

semiconductors, InSb [14] and GaAs/GaAlAs [15], doped filter glasses CdSxSe1-x [16] and 

liquid crystals such as MBBA [17]) and coupled-waveguide arrays (example of solitons in 

materials with CWA properties include long proteins [18], 1d ionic crystals [19] and 

electrical lattices [20]). 

This thesis marries analytical and numerical approaches in the investigation of soliton 

behaviour at nonlinear interfaces ï an area of optics which still remains relatively under 

investigated.  The study is important in that it will give us a better understanding of the 

properties of solitons and the materials through which they travel in advance of their 

further use in optical technologies [21-31].  This work means that we can identify potential 

pitfalls in the development of such technologies, including data transfer and all optical 

switching [3] without the need for more extensive (and costly) physical experiments. 

This study is also novel in that it calls for the use of the nonlinear Helmholtz approach to 

modelling soliton behaviour.  Using the Helmholtz equation over the nonlinear 

Schrödinger equation as has been done elsewhere [32-43], provides more robust results 
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and gives the opportunity to explore soliton properties when they propagate at arbitrary 

angles - the advantages of Helmholtz soliton theory will be given in 1.3. 

1.1 Spatial optical solitons 

Spatial optical solitons are beams of laser light that can propagate in nonlinear optical 

materials, as mentioned, a material whose refractive index has a local intensity-dependent 

contribution.  They are self-collimating, i.e. they evolve with a stationary intensity profile 

and uniform phase fronts, and self-stabilising in that they are robust against perturbations.  

These two key properties mean that solitons could be used to carry bits of data in future 

optical devices [21-31]. 

The self-focusing (and self-defocusing) of continuous wave (CW) beams in a bulk 

nonlinear medium has been the subject of a number of earlier studies [2, 44, 45].  A spatial 

soliton is formed when an equilibrium point is found between the nonlinear effects of the 

medium and the diffractive effects of the beam.  This is highlighted in the figure below: 

 

Figure 1 Showing how the equilibrium point between the focusing of the material and the diffraction of the beam 

lead to a spatial soliton. 
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The formation of a soliton is possible in a nonlinear medium (such as a Kerr type material) 

because of the intensity dependence of the mediumôs refractive index.  This acts like a 

lens, causing the beam to focus, overcoming its natural tendency to diffract.  This system 

is a result of its own optical waveguide since the light is confined (ótrappedô) to the high-

index region because of the balance created by the conditions found in the system[46].  

Before this response was discovered, this type of waveguide phenomenon was frequently 

purposely created in linear systems.  This was done by introducing an increasing refractive 

index in the transverse region occupied by the beam [46]. 

The work in this thesis explores the behaviour of beams created by the self-focusing of 

continuous wave beams, i.e. bright spatial solitons.  While properties of beams created by 

self-defocusing (dark solitons) are certainly of interest (see here [35, 38, 43]) the 

exploration of their behaviour in nonlinear systems is beyond the scope of this thesis. 

1.2 Geometries: single- and multi-interface problems 

The work in this thesis is based on two different types of interfaces.  The first introduced 

are single interfaces, which appear in chapters 2, 3 and 4.  The single interface is a result of 

two adjoining dissimilar materials, that is, two materials with uniform nonlinear refractive 

index are either side of the interface.  Interfaces of this type have been investigated in the 

past [36, 40, 41, 43, 47-50], and a variety of interface phenomenon seen at them, including 

Goos-Hänchen shifts [36, 42, 47] and surface waves [36, 51, 52].  In chapter 5, the 

interface investigated is a multi-interface [53-55], which means that the first material is 

similar to those discussed above, however, the second medium is a coupled waveguide 

array.  The beam propagating from medium 1 to medium 2 will  experience multiple 

changes in waveguide, hence multi-interface.  Figure 2 highlights these two situations 

below:   
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Figure 2 Showing the difference between single- and multi-interface problems. 

1.3 The role of Helmholtz modelling 

Undoubtedly the most popular method of modelling the propagation of spatial solitons is 

the nonlinear Schrödinger (NLS) equation.  This type of modelling is exhibited [47-50, 56] 

and explained [1] in many publications, despite its inherent disadvantages.  The NLS 

equation is not the only way to model beams of this nature; the nonlinear Helmholtz 

(NLH) approach, while remaining less commonly used, is developing a reputation of 

producing more reliable and less restrictive results. 

The NLH equation, first used for modelling solitons in [34], has been used extensively in a 

variety of soliton based investigations [32, 34, 36, 37, 39-43].  The intrinsic advantages of 

the NLH equation over the NLS equation are numerous and have led to its use in this 

study.  These advantages will be set out here. 

All studies exploring soliton behaviour which use the NLS as their governing equation 

require the implementation of paraxial approximations [47, 48].  Such a modelling 

approach leads to a number of physical limitations implicit in the governing equation, and 

restricts the general validity of conclusions that may be drawn about the refraction 

properties of nonlinear beams.  The NLS equation forces the assumption of the following 

three criteria: 
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i. the width of the beam is broad in comparison to the carrier wavelength; 

ii.  the beam is of moderate intensity; 

iii.  the beam must propagate very close to the reference direction. 

In this research programme, Helmholtz soliton theory has been deployed to relax the third 

restriction: broad beams of moderate intensity may now propagate at arbitrary angles of 

incidence, reflection and refraction with respect to the interface.  This intrinsic advantage 

of the NLH equation allows for a study of wider scope, and one which more accurately 

reflects the actual properties of solitons in the physical world, and theoretical and 

computational models need to account for this.  The following section explains how we 

can reach the nonlinear Helmholtz governing equation from first principles.  

1.4 Nonlinear Maxwell's equations 

As has been identified, the use of Helmholtz soliton theory has intrinsic advantage over 

other approaches.  In this section, it will be shown how to arrive at the nonlinear 

Helmholtz equation used throughout this thesis from first principles. 

For a dielectric medium where m=B H , Maxwell's equations may be written as: 

 ,
t

m
µ

Ð³ =
µ

D
B  (1.1) 

 0,ÐÖ =D  (1.2) 

 ,
t

µ
Ð³ =-

µ

B
E  (1.3) 

 0,ÐÖ =B  (1.4) 

where ԏ is the electric field vector, B  is the magnetic field vector, D  is the electric 

displacement vector, H is the magnetic field strength vector, m is the permeability of free 

space and t is time.  In deriving a wave equation for the dielectric field, ԏ and B  are 

decoupled as a first step.  This can be achieved by taking the curl of equation (1.3) and 

substituting (1.1): 
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 ( ) ,
t

å õµ
Ð³ Ð³ =Ð³æ ö

µç ÷

B
E  (1.5) 

which leads to  

 ( )
2

2
,

t
m
µ

Ð³ Ð³ =
µ

D
E  (1.6) 

Now using an operator identity from vector calculus, namely 

 ( ) ( ) 2 ,Ð³ Ð³ =Ð ÐÖ -ÐE E E  (1.7) 

it follows that equation (1.6) becomes 

 

2
2

2
.

t
m
µ

-Ð =-
µ

D
E  (1.8) 

The next step is to simplify the left hand side of equation (1.8) by replacing the ÐÖE term 

with the constitutive relation that connects D  to ԏ through the polarisation, P  (and the 

associated susceptibility tensors, c).  Consider the general definitions: 

 0 ,e¹ +D E P  (1.9) 

 
L NL ,¹ +P P P  (1.10) 

where 
L

P and 
NL

P  are the linear and nonlinear polarisation vectors, respectively and e0 is 

the permittivity of free space.  When the linear response of the medium is isotropic, 

L (1)

0e c=P E, NLe= +D E P  and 0 ,re e e= where 
()1

1re c¹ + and ()1c is the linear 

susceptability.  In nonlinear optics, the nonlinear optical response can often be described 

by expressing the polarisation as a power series in the electric field strength: 

 
() () () () ()1 2 3 4 52 3 4 5

0 ( ) ( ) ( ) ( ) ( ) .t t t t te c c c c cè ø= + + + +
ê ú

P E E E E E  (1.11) 

where the second- and fourth-order polarisation terms only occur in noncentrosymmetric 

crystals (crystals that do not display inversion symmetry) and therefore vanish in the 

materials considered in this thesis [1].  By combining this constitutive relation with 

equation (1.2) it follows that: 



7 

 

 
NL1 1

.e
e e

ÐÖ =- ÖÐ - ÐÖE E P  (1.12) 

Hence, even when the linear dielectric properties of a host medium are uniform i.e. where 

gradients eÐ are zero, the divergence ÐÖE is generally non-vanishing.  To proceed a 

homogeneous linear medium is assumed, so that 0.eÐ =   Then by substituting equation 

(1.12) into equation, it obtains that:   

 

2 2 NL
NL 2

2 2

1
,

t t
me m

e

µ µå õ
Ð - ÐÖ -Ð = -æ ö

µ µç ÷

E P
P E  (1.13) 

which leads to 

 ( )
2 2 NL

2 NL

2 2

1
.

t t
em m

e

µ µ
-Ð = Ð ÐÖ -

µ µ

E P
E P  (1.14) 

By assuming the carrier wave has 

 ( , , ) ( , )exp( ) *( , )exp( ),x z t x z i t x z i tw w= - + +E E E  (1.15) 

where equation (1.15) is the continuous wave solution and w is the angular frequency.  The 

nonlinear polarisation is 

 
NL NL NL( , , ) ( , )exp( ) *( , )exp( ),x z t x z i t x z i tw w= - + +P P P  (1.16) 

then equation (1.14) becomes 

 ( )2 2 NL 2 NL1
( ) ( ).mw e mw

e
- -Ð = Ð ÐÖ +E E P P  (1.17) 

If ԏ is linearly polarised in the y direction and propagates along the z direction, and if , 

therefore, the ( )NLÐÖ ÐÖP term is neglected, it emerges that 

 

2 2 2
2

2 2 2
( ) 0.j

E E
n E E

z x c

wµ µ
+ + =

µ µ
 (1.18) 

Where n(j) is the general refractive index (including linear and nonlinear effects).  Equation 

(1.18) is the nonlinear Helmholtz equation, which is the starting point to the analysis of all 

the research in the following chapters.   
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An assumption is made that the nonlinearities are nonresonant.  Whilst this assumption 

excludes the consideration of some nonlinear effects, such as frequency doubling, these 

effects are not relevant to the work done in this thesis [57-59]; the effects of interest are 

described by equations discussed in section 2.2.  
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1.5 Thesis outline 

In order to methodically describe and explain bright soliton behaviour at a variety of 

interfaces, the thesis will be structured as follows. 

Chapter 2 discusses the reflection and refraction characteristics of soliton beams incident 

on the planar boundary between dissimilar cubic-quintic materials.  The deployment of 

Helmholtz soliton theory allows for the simultaneous consideration of: (i) arbitrary angles 

of incidence, reflection and refraction (relative to the interface), and (ii) finite beam waists 

(as opposed to infinitely-wide plane waves).  Despite an abundance of literature 

concerning solitons at interfaces, there appears to be no published research addressing 

refraction in the presence of cubic-quintic optical nonlinearity (and certainly none in 

arbitrary-angle contexts).  Excellent agreement is generally found between theoretical 

predictions from a generalised Snellôs law and results from extensive computer 

simulations.   

In Chapter 3, these novel analyses have been complemented by further investigations into 

other fundamental aspects of optical refraction, namely Goos-Hänchen shifts and critical 

angle prediction.  Both aspects are the first of their kind in the cubic-quintic regime. 

The fourth chapter considers surface wave propagation along the interface between two 

dissimilar power-law materials; this research has already contributed to a published peer 

reviewed paper [36].  The chapter also expands upon that paper by giving a more detailed 

account of surface wave stability properties. 

Chapter 5 provides an in-depth computational study into beam propagation in coupled 

waveguide arrays (materials whose refractive index is periodically patterned) and there 

appears to be a link between the beam's critical angle and the depth of the modulation of 

the array. 

The thesis concludes with a summary of findings and suggestions surrounding the 

implications of this novel research.  
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2. Single interfaces I: cubic-quintic systems 

2.1 Introduction  

This section will focus specifically on the refraction of spatial solitons at the interface 

between dissimilar cubic-quintic materials (see Figure 3).  Examples of such materials 

include some semiconductors, e.g. AlGaAs [1] and doped filter glasses, e.g. CdSxSe1-x [2, 

3].  This is the first time that Helmholtz soliton theory has been used to investigate 

refraction with the universal cubic-quintic optical nonlinearity.  Previous analyses have 

considered only Kerr-type [4-6] and more recently, power-law [7] materials (where 

Helmholtz solitons were shown to well-describe nonparaxial, i.e., arbitrary angle, 

refraction).  The motivation here is to derive a novel Snell's law that may be used to 

predict the arbitrary-angle refraction of finite-amplitude beams in the most general 

nonlinear-medium context to date.  The problem is first analysed mathematically, and 

theoretical predictions are subsequently tested computationally. 

 

Figure 3.  Schematic diagram showing a typical set-up for an interface between dissimilar cubic-quintic materials, 

and the parameters which can be varied across the interface.  The values of these parameters will define whether 

the interface is linear, nonlinear, or mixed. 

2.1.1 Nonlinear Polarisation 

The material being investigated in chapters 2 and 3 has the refractive index, seen in Figure 

3, which will be discussed more in 2.2.1.  Within the assumptions of scalar wave optics, 

the nonlinear polarisation for such a material can be written as: 
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where E is the (complex) electric field, c(1)
 is the linear susceptibility, while c(3)

 and c(5)
 

are the third and fifth order nonlinear susceptibilities, respectively.  The first term on the 

RHS of (2.1) is the linear polarization term and the last two terms are the nonlinear 

polarisation terms.  It is the last two terms in equation (2.1) which give materials with the 

refractive index (2.4) the name 'cubic-quintic' [8]. 

2.1.2 Defining Interface Problems 

A nonlinear material is one with a contribution to the refractive index n of the form nNL = 

nNL(E), where E is the local electric field amplitude (a more detailed mathematical 

treatment will be given in section 2.2.1).  The incident beam travels from medium j = 1 to 

medium j = 2, where the values of n0j (the linear part of the refractive index), aj and nj 

(nonlinearity coefficients) vary across the interface (strictly, it is the abrupt changes in 

these parameters that define the interface itself).  When n01 = n02 (no change in linear 

refractive index), the interface may be classified as nonlinear.  Similarly, when a ſ a2/a1 

= 1 and n ſ n2/n1 = 1, the interface is classified as linear.  Mixed interfaces have, in 

general, arbitrary changes in the medium parameters. 

2.1.3 Literature Review 

The seminal papers dealing with spatial solitons at interfaces were by Aceves and co-

workers nearly 30 years ago [9-13]. This extensive body of research explores the 

behaviour of beams at Kerr-type interfaces within the restriction of paraxial wave optics 

(see section 1.3).  Reference [9] develops an equivalent particle theory, whereby the 

soliton is modelled as a spatially-averaged particle moving in an equivalent potential 

(whose shape depends upon, for instance, material mismatches).  While this paper has 

provided general background reading, the paraxial analysis therein is not particularly 

relevant to the fully angular (i.e., Helmholtz nonparaxial) problem.  For instance, a similar 

description of Helmholtz solitons is of limited practical use: it has no simple óNewtonian 

mechanicsô interpretation and provides reasonably accurate predictions only at moderate 

angles of incidence. 

The theoretical cornerstone for this chapter is to be found in the papers by Sánchez-Curto, 

Chamorro-Posada, and McDonald [4, 6].  This work investigates the behaviour of solitons 
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at Kerr-type interfaces but, crucially, avoids the use of the paraxial approximation.  In this 

way, the first beam-refraction model based on an inhomogeneous nonlinear Helmholtz 

equation could be developed.  Their approach provides an analytical platform that allows 

for angles (incidence, reflection, and refraction) of any size (with respect to the interface) 

to be investigated.  The paper also reports a novel generalisation of Snellôs law, which 

includes a generic multiplicative correction factor.  Computer simulations are used to test, 

and confirm, the appropriateness of the model.  Results show excellent agreement between 

theoretical predictions and full numerical calculations. 

The same authors have more recently published a follow-up paper [5].  This article focuses 

on two particular phenomena under these conditions: nonlinear external refraction and 

total internal reflection, again, good agreement is shown between the theory and numerics. 

The final paper that plays a fundamental role in this chapter is by Christian, McDonald, 

and Chamorro-Posada [14].  This article reports the first exact analytical bright solitons for 

a Helmholtz equation with cubic-quintic nonlinearity.  Mathematical and computational 

analyses are used to investigate the stability properties of the new Helmholtz solitons 

against perturbations to the beam shape.  

2.2 Solitons at Interfaces 

2.2.1 Model Equation 

Underpinning the subsequent analysis is the continuous-wave scalar electric field, 

 ( ) ( ) ( ) ( ) ( )*, , , exp , exp ,E x z t E x z i t E x z i tw w= - + +  (2.2) 

where x and z are the spatial coordinates in the medium, t is the time coordinate and ɤ is 

the optical (angular) frequency.  This representation makes sure that Α remains real, as 

should be the case.  If the spatial part of the electric field is slowly varying on the scale of 

the free-space optical wavelength l, then E(x,z) must satisfy a nonlinear Helmholtz 

equation on each side of the material boundary: 

 ()
2 2 2

2

2 2 2
0,j

E E
n E E

z x c

wµ µ
+ + =

µ µ
 (2.3) 

where j = 1, 2 denotes the medium and c is the vacuum speed of light.  The total refractive 

index nj is routinely taken to be the sum of two terms: nj = n0j + nNL j(E), where n0j is the 

linear index of the medium at frequency ɤ, and nNLj(E) is a (small) field-dependent 



16 

 

contribution. Since equation (2.3) is quadratic in nj, it follows that nj
2
 = n0j

2
 + 2n0jnNL(E) + 

nNL
2
(E).  However, since |nNL j(E)|/n0j << O(1), the last term may be safely neglected so that 

nj
2
 å n0j

2
 + 2n0jnNL j(E).  For cubic-quintic materials, the nonlinear part of the refractive 

index may be written as nNL j(E) = (2n0j)
-1
(aj|E|

2
 + nj|E|

4
), and hence 

 
2 42 2

0 .j j j jn n E Ea n¹ + +  (2.4) 

Here, aj is the cubic (or Kerr) coefficient, which is taken to be positive, and nj is the 

quintic correction term which can be either positive or negative [14]. 

To facilitate a straightforward analysis with earlier works [9-13, 15, 16], a carrier-wave 

component, exp(ik1z), can be factored out of E(x,z): 

 ( ) ( ) ( )0 1, , exp .E x z E u x z ik z=  (2.5) 

Here, E0 is a real constant, k1 = (w/c)n01, and u(x,z) is the dimensionless envelope.  The 

target is now to find an equation for u.  It can be shown (see Appendix B) that u satisfies 

the inhomogeneous nonlinear Helmholtz equation, 

 ( ) ( ) ()
2 2

2 4 2 4

2 2

1
1 1

2 4

u u u
i u u u u u u H uk s a n s x

z z x k

µ µ µ Dè ø
+ + + + = + - + -é ùµ µ µ ê ú

 (2.6) 

The longitudinal and transverse coordinates are normalised according to z = z/LD1 and 

x = 21/2
x/w0, respectively, where LD1 = k1w0

2
/2 is the diffraction length of a reference 

(paraxial) Gaussian beam of full waist w0.  Since the validity of equation (2.6) requires e ſ 

l/w0 << O(1) (i.e., that beam waists are much larger than the free-space light wavelength), 

the inequality k ſ (1/k1w0)
2
 = e2/4p2

n01
2
 << O(1) is maintained throughout.  By measuring 

the laboratory electric field in units of E0 = (n0/kn2LD)
1/2

, the small parameter 

s ſ n1E0
2
/a1 describes the ratio of quintic to cubic nonlinear phase shifts.  The Heaviside 

unit function H(ɝ) is defined by H(ɝ < 0) = 0 and H(ɝ > 0) = 1 (see Figure 2) so that in the 

domain of medium 1, equation (2.6) is just the conventional cubic-quintic Helmholtz 

equation [14].  The model is also supplemented by three parameters that describe the 

mismatch between the linear and nonlinear properties of the two media (note that only 

relative changes are important): 
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(2.7) a, b & c 

In the classic paraxial models (based upon the universal nonlinear Schrödinger equation), 

the D parameter is absorbed into system normalisation (the transverse coordinate is scaled 

by a factor proportional to D
1/2

).  One immediate consequence of such a scaling is that only 

those material configurations with D > 0 (i.e., n02 < n01) may be considered.  It will be 

shown shortly that a refraction regime of fundamental physical importance (namely, 

external refraction) is automatically excluded from the paraxial domain. 

 

Figure 4. Schematic diagram showing refraction at an interface.  In the first medium, x is negative and the 

Heaviside unit function H = 0.  In the second medium, x is positive and H = 1.   

2.2.2 Mathematical Method 

The mathematical procedure for deriving Snellôs law for soliton beams can be broken 

down into stages: 

i. Derive the exact analytical soliton solutions in the two media, 

ii.  Apply the continuity conditions at the interface, 

iii.  Exploit the geometrical relations to find Snellôs law in terms of angles. 

 

Strictly, u and its normal derivative should be continuous across the interface.  However, 

enforcing these two conditions in the context of scalar modelling can lead to erroneous 

predictions (mainly, that a finite-amplitude beam can never refract across the interface).  
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The work of Sánchez-Curto et al. [4] showed that Helmholtz solitons at interfaces can be 

very well described by enforcing only phase continuity across the interface. 

2.2.3 Exact Bright Solitons 

From equation (2.6), the governing equations in each medium can be isolated as: 

Medium 1: 

2 2
2 4

2 2

1
0,

2

u u u
i u u u uk s

z z x

µ µ µ
+ + + + =

µ µ µ
 (2.8) 

Medium 2: 

2 2
2 4

2 2

1
0.

2 4

u u u
i u u u u uk a ns

z z x k

µ µ µ D
+ + - + + =

µ µ µ
 (2.9) 

On-axis soliton solutions of equations (2.8) and (2.9) may be sought using an ansatz: 

 ( ) ( ) ( )
1 2

, 1 cosh exp exp ,
2

u A B C ik iz

z
x z x z

k

- å õ
= + -è ø æ öê ú

ç ÷
 (2.10) 

where A, B, C and kz (the propagation constant) are real parameters.  Substituting equation 

(2.10) into equations (2.8) and (2.9) yields 

 
1

1 4 ,
2

kz kb
k

=° +  (2.11) 

where the ± sign in the phase flags the longitudinal sense of propagation (forward or 

backwards in z, respectively).  The other solution parameters for the solution (2.10) in each 

medium are given in Table 1:     

Medium 1:                       Medium 2: 

( )2 2
0 03

4 2 1Ab r sr= = +  ( ) ( )024 2
04 3

2 1A
nsr

a k a
b rD+ = = +  

4
03

1B sr= +  
04

3
1B

nsr

a
= +  

( )
1 2

2
0 03

2 2 2 1C b r srè ø= = +ê ú ( ) ( )
1 2

2
0 04 3

2 2 2C
k

b r a nsrD è ø= + = +ê ú 

Table 1 showing the parameters for the exact soliton solution. 

To generate more general off-axis solitons, the following rotational transformation is 

applied to solution (2.10) (which leaves the parameters A, B, C and b unchanged): 
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Table 2 showing the transformations needed to find the off axis solutions. 

 

Figure 5 Shows the two coordinate frames of the on, and off axis solutions. 

The off axis solution in medium 1 is 

 ( )
( )

1 2

inc inc
inc2

incinc inc

4 1 4
, exp exp ,

1 2 2 21 cosh ,
u i V i

VB

b kb z z
x z x

k k kx z

ë û è ø+î î å õ å õ
= ° + -ì ü é ùæ ö æ ö

++ Qè ø ç ÷ ç ÷î î ê úê úí ý

   

(2.12) 

where Binc ſ 1 + (4/3)sr0, r0 is the peak intensity of the beam, binc ſ (r0/2)[1 + (2/3)sr0] 

is related to the propagation constant of the corresponding paraxial solution, and Qinc(x,z) 

= 2(2binc)
1/2

(x ï Vincz)/(1 + 2kVinc
2
)
1/2

.  Similarly, in medium 2, 
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ref ref

ref
ref2

ref

4
,

1 cosh ,

1 4
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1 2 2 2
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i V i
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x z

x z

kb z z
x

k k k

ë ûî î
=ì ü
+ Qè øî îê úí ý

è ø-D+ å õ å õ
³ ° + -é ùæ ö æ ö

+ ç ÷ ç ÷ê ú

 (2.13) 

where Bref ſ 1 + (4/3)nsr0, bref ſ (r0/2)[a + (2/3)nsr0] and Qref(x,z) = 2(2bref)
1/2

(x ï 

Vrefz)/(1 + 2kVref
2
)
1/2

.  Thus, the incident and refracted soliton beams [solutions (2.12) and 
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(2.13), respectively] have very similar mathematical structures.  A key distinction is the 

appearance of the linear mismatch parameter D in the phase of the latter. 

2.2.4 Universal Snellôs Law 

For simplicity, the interface in the laboratory frame is aligned along the z axis so that its 

transverse position is always at x = 0.  The phase of solutions (2.12) and (2.13) at the 

interface (i.e., at ɝ = 0) can be matched only when the incident and refracted beams share a 

common longitudinal sense.  Phase continuity then ensures that: 

 
( ) ( )2 2

0 0 0 03 3

2 2

inc ref

1 2 1 1 2
,

1 2 1 2V V

kr sr kr a nsr

k k

+ + -D+ +
=

+ +
 (2.14) 

which can be rearranged to find Vref
2
  in terms of Vinc

2
 according to: 
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2
2 2 inc

ref inc 2
0 03

1 21
,

2 1 2 1

V
V V

k
d

k kr sr

+å õ
= -æ ö

+ +ç ÷
 (2.15) 

 ( ) ( )2
0 03

2 1 1 .d kr a sr n¹D+ - + -è øê ú (2.16)

                                 

While equation (2.15) describes soliton refraction in terms of transverse velocities (in 

normalised coordinates), it is more instructive to consider propagation angles (in 

laboratory coordinates).  A beam with velocity V in the (ɝ, ɕ) frame evolves at oblique 

angle ɗ relative to the longitudinal axis in the (x, z) frame.  The fundamental trigonometric 

relations [17]: 

                inc, ref
2

inc, ref

1
cos ,

1 2 V
q

k
=
+

                   
inc, ref

inc, ref
2

inc, ref

2
sin ,

1 2

V

V

k
q

k
=
+

 (2.17)a,b 

leads to the compact result 

 inc, ref inc, reftan 2 .Vq k=  (2.18) 

One of the fundamental properties of wave propagation in Helmholtz-type models is that 

ɗinc and qref can be of any magnitude, even though k << O(1) [18].  By combining 

equations (2.15) and (2.18), a universal Snellôs law can be obtained: 

 01 inc 02 refcos cos ,n ng q q=  (2.19) 
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 (2.20) 

Equations (2.19) and (2.20) are key results of this research, describing soliton refraction in 

cubic-quintic systems.  It is important to note that equation (2.19) contains a single 

multiplicative correction factor g that captures the interplay between material mismatches, 

a finite beam waist, and system nonlinearity. 

2.2.5 Critical Angles 

When ɗinc = ɗcrit, the refracted soliton might be expected to travel along the interface (one 

also expects surface waves to play a central role in understanding propagation properties in 

such a regime).  More formally, the condition ɗref  = 0 at ɗinc = ɗcrit, when applied to 

equation (2.19), leads to an algebraic prediction for the critical angle (see Appendix B): 

 
( ) ( )

( )

1 2
2

0 03
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0 03

2 1 1
tan .

1 2

kr a sr n
q

kr a nsr

ë ûD+ - + -è øî îê ú=ì ü
-D+ +î îí ý

 (2.21) 

The existence of a critical angle requires the argument of the square-root in equation (2.21) 

to be non-negative (e.g., when a = n = 1 and D > 0).  In the plane-wave limit , it would 

seem reasonable for incident waves travelling at ɗinc = ɗcrit to be refracted along the 

interface (as they are according to ray optics in linear systems [19]).  In the more 

complicated case of beams, diffraction (particularly in combination with system 

nonlinearity) will inevitably lead to more complicated wave phenomena in the vicinity of 

such critical points. 

2.2.6 Interface Transparency 

The interface is effectively transparent to the incident beam when ɗref = ɗinc.  From 

equation (2.19), it follows that the condition for interface transparency is gn02 = n01, which 

is equivalent to d = 0 [obtained by setting Vref
2
 = Vinc

2
 in equation (2.16)].  Transparency 

thus occurs when the linear and (peak) nonlinear refractive index mismatches cancel each 

other exactly.  It is interesting to note that the transparency condition (where the beam 

passes through the interface unrefracted) is inherently satisfied by the 'no interface' 

condition, [i.e., ȹ = 0 (since n02 = n01), a = 1 (since a2 = a1), and n  = 1 (since n1 = n2)] 

even though the two situations are physically different. 
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2.2.7 Reflection and Refraction 

When a beam encounters an interface, generally one of two effects tend to dominate the 

system behaviour: reflection or refraction. 

Reflection.  When medium 2 is less optically dense and qinc < qcrit, a refracted 

beam generally cannot be excited ï the incident soliton cannot penetrate 

across the boundary into the second medium because this would demand 

|cosqref | > 1.  In such cases, the in-going beam will often be totally internally 

reflected.  Since the system at hand is highly nonlinear, any beam interaction 

with the interface may generate radiation (i.e., low-amplitude diffracting 

waves with sufficient intensity to effectively self-trap).  Recent results [7] 

have also shown that in the presence of strong nonlinearity (e.g., power-law 

regimes), the incident soliton can simply break up into radiation close to the 

critical angle. 

 

Refraction.  When (i) medium 2 is less optically dense and qinc > qcrit, or (ii) 

medium 2 is more optically dense, the incident beam may be refracted at 

angle qref = cos
ï1

[(n01/gn02)cosqinc].  Refraction characteristics may be sub-

classified as internal or external, depending upon whether the outgoing beam 

bends toward the interface or away from it, respectively (see Figure 6).  This 

categorisation is most simply described in terms of the sign of d [see equation 

(2.16)].   

d < 0 Vref > Vinc  so that qref > qinc é External refraction  

d = 0 Vref = Vinc  so that qref = qinc é Transparency condition 

d > 0 Vref < Vinc  so that qref < qinc é Internal refraction  

External refraction is an intrinsically nonparaxial regime, where qref can 

easily violate the paraxial approximation even under the simplest material 

constraint (e.g., a linear interface with n02 > n01, and hence D < 0). 
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Figure 6. Schematic diagram showing (a) internal refraction where the beam bends towards the interface and (b) 

external refraction, where the beam bends away from the interface. 

2.3 Simulating Solitons at Interfaces 

The analysis in the preceding section captures the essence of soliton refraction within the 

phase-continuity approximation.  However, the full complexity of the interface problem 

can be addressed only through computer simulations.  Such simulations will be undertaken 

here using a suite of Matlab codes that integrate model (2.6) numerically and analyse the 

dataset using custom curve-fitting routines. 

2.3.1 Numerical Methods 

Outline of Algorithm  

A brief description of the numerical methods used will now be given.  This description is 

relevant to all the simulations carried out for this thesis. 

There are three initial steps to simulating the propagation of the beams in the longitudinal 

direction z.  Firstly, input conditions must be specified ï in this case a cosh-type function 

such as u(x,0) = A/{1 + Bcosh[2(2b)1/2x]} 1/2
.  To approximate the solution after the first 

step (of size Dz), a split step method is used.  This approach (even when symmetrized) can 

only be deployed for Helmholtz-type models in the short term (in this case, a single 

longitudinal step) as it proves to be insufficiently accurate [20].  The field at the second 

step, and every step thereafter, is calculated with a difference-differential algorithm.  This 

method requires information from the two preceding steps before it can be implemented 

(hence why it cannot be used to find the field after the first step).  The difference-

differential method has been shown to be a highly effective and efficient way to simulate 
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beam propagation problems of this type [20].  It replaces longitudinal derivatives with 

their (centred) finite difference approximations, and the transverse diffraction operator is 

implemented through the use of Fast Fourier Transforms. 

Spatial Filtering 

The continuum Helmholtz equation (2.6) has an elliptical plane wave dispersion relation 

given by equation (2.22).  Any spatial frequencies kx on the associated computational grid 

that fall outside this ellipse can result in an unphysical numerical instability; such spectral 

components must hence be removed from the solution after each propagation step.  A full 

description of the spatial filtering condition traditionally used in homogeneous Helmholtz-

type nonparaxial simulations can be found in ref. [20].  Within the linear plane wave 

approximation, spatial frequencies satisfying kx
2
 > (kx

2
)max are eliminated using a top-hat 

function in Fourier space, where: 

 ( )
2

2

2max

4
1 1 .

2
kx

k z

z k

è øDå õ
é ù= + -æ ö

D é ùç ÷
ê ú

 (2.22) 

When necessary, equation (2.22) can be easily augmented by a correction term (at D/2k) to 

accommodate interface geometries.   

2.3.2 Interface Geometries 

In section 2.2, the material boundary was aligned along the z axis so that oblique incidence 

was described in a frame where the ingoing beam was inclined at angle ɗinc relative to the 

fixed interface.  Such a choice of relative orientation is entirely arbitrary and made purely 

for mathematical convenience (to facilitate simpler phase matching).  In fact, simulating 

model (2.6) with that particular configuration can lead to numerical difficulties arising 

from spatial filtering in combination with dense grid discretisation and solution phase 

sampling requirements [4].  To avoid these complications, all computations have been 

performed in the frame where the incident soliton is on-axis and the interface is rotated 

relative to the fixed input beam (see Figure 7). 
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Figure 7a) Schematic diagram showing beam refraction at an interface in the analysis in section 2.  b) Shows the 

interface setup used in the computer simulations, the beam approaches the interface travelling directly down 

the longitudinal  axis, while the analytical problem considers the interface to be aligned along the 

longitudinal axis. 

2.3.3 Calculation of Refraction Angle 

Before proceeding with simulations, a way must be found to extract the refraction angle 

from the numerical dataset.  Referring to Figure 7b), the angular deviation j from the 

incident (straight-through) line is related to the refraction angle qref by:   

 ref inc .q q j= -  (2.23)        

Therefore, it follows that 

 ( ) inc
ref inc

inc

tan tan
tan tan ,

1 tan tan

q j
q q j

q j

-
= - =

+
 (2.24) 

where the trigonometric addition formula has been used to obtain the far right-hand side of 

equation (2.24).  In the frame in which the computations are carried out, j can be 

identified with a transverse velocity v through 

 tan 2  v.j k=  (2.25) 

By combining equations (2.25) and (2.24), it is straightforward to show that 
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or equivalently, 

 inc
ref

inc

 v

1 2 v

V
V

Vk
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 (2.27) 

Since simulations are always performed in the normalised frame of reference, the 

numerical data can be analysed to yield a value for v.  The desired angle qref can then be 

obtained from equations (2.27) and (2.18). 

In all simulations, the interface is oriented along the line x  + Vincz = 0 such that the centre 

of the beam encounters the interface at z = x = 0.  If the peak of the refracted soliton is 

supposed to move along the trajectory 

 v 0,x z- =  (2.28) 

then it follows that the local velocity v (far away from the interface in medium 2) may be 

calculated from the slope 

 v .
d

d

x

z
¹  (2.29) 

This result is crucial for analysing the numerical data. 

2.4 Simulations to test Snellôs Law 

The results in this section test the predictions of the new Snellôs law [equation (2.19)] 

against fully-nonlinear numerical computations for a variety of interfaces.  The line qref = 

qinc (marked on all of the following Snell-type plots) represents the transparency condition 

(where ŭ = 0 ï see section 2.2.6); it differentiates between regimes involving internal 

(below the line, i.e. ɗref < ɗinc) and external (above the line, i.e. ɗref > ɗinc) refraction.  The 

full interface problem is associated with a six-dimensional parameter space that must 

somehow be tamed.  For definiteness, the following parameters are chosen for simulations: 

k  ́ (l/w0)
2
 (inverse beam width).  Two typical values of k are considered (namely, 

2.5³10
-3

 and 1.0³10
-4

); both respect the inherent inequality for Helmholtz modelling [that 

k << O(1)]. 
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a ſ a2/a1 (ratio of cubic nonlinearity coefficients).  Values of a are chosen to be 0.5, 1.0 

or 2.0.  The two non-unity cases represent a large change in the strength of the focusing 

properties of the medium across the interface (a halving and doubling, respectively). 

n ſ n2/n1 (ratio of quintic nonlinearity coefficients).  Values of n are chosen to be 0.5, 1.0 

and 2.0 so that the relative change in the quintic coefficients is the same as that for the 

cubic coefficients. 

s ſ n1E0
2
/a1  (ratio of cubic to quintic nonlinear phase shifts).  Typically, the quintic 

contribution to self-focusing is a small correction to the cubic (Kerr) effect [8].  The 

competing cubic-quintic nonlinear response can be used as a leading-order approximation 

to a saturable intensity-dependent refractive index [8].  Here, s = ±0.15 is used [14].   

r0 (peak intensity).  For s = -0.15, the bistability condition means that there are two values 

of r0 describing solutions with different peak intensities but the same full-width-at-half-

maximum: r0 º 1.3 and r0 º 4.14 [14].  For s = +0.15, the corresponding soliton is 

monostable and has r0 º 0.87. 

2.4.1 Linear Interfaces 

Illustrative results for soliton refraction at a linear interface are shown in Figure 8a) for a 

relatively narrow beam (where k = 2.5³10
-3

).  Generally, the agreement between 

theoretical predictions [solid lines ï obtained from equations (2.19) and (2.20)] and 

numerical data (points) is very good.  Figure 8b) shows refraction for parameters with a 

low angle of incidence (qinc = 1.0̄ ) and D = -0.01 (a relatively large step in refractive 

index).  Upon colliding with the interface, the beam splits into a predominant externally-

refracted component (well described by the Snell law), accompanied by a lower-amplitude 

satellite structure (this secondary component does not survive in the long term, having 

insufficient energy to self-trap and form a solitary wave).  The beam/interface interaction 

also generates radiation modes that are reflected back into medium 1. 

The true collision, as predicted by solving equation (2.6) numerically, is much more 

complicated than the adiabatic assumptions of the analysis is section 2.2 (which allows 

only for a single stationary refracted beam and no radiation or reflected waves).  Such an 

increase in complexity clearly gives rise to a difference between the Snellôs-law prediction 
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and the true (computed) refraction angle.  However, it is interesting to note [from Figure 

8a)] that the general trend of the Snellôs-law prediction is still well adhered to.   

 

Figure 8a) Shows a Snell's law plot for a linear interface.  Figure 8b) Shows the 3d plot for the point: D = -0.01 and 

q = 1°.  Figure 8c) Shows the 3d plot for the point: D = -0.005 and q = 1° and Figure 8d) Shows the 3d plot for the 

point: D = 0.005 and q = 10°. 

Figure 8c) shows a similar example of soliton refraction but with D = -0.005 (as opposed 

to D = -0.01).  With a smaller index step, the interaction is much 'cleaner': far less 

radiation is generated, and there is no secondary/satellite structure shadowing the refracted 

beam.  In Figure 8d) the beam is propagating with a larger angle of incidence.  Here, the 

beam can be seen to refract into the second medium without losing much radiation at the 

interface, and so, the point representing this refraction in Figure 8a) fits well with the 

theory line. 


































































































































































































































































































































































































