Potential-based methodology for active sound control in three dimensional settings

Lim, H, Utyuzhnikov, SV, Lam, YW and Kelly, L 2014, 'Potential-based methodology for active sound control in three dimensional settings' , The Journal of the Acoustical Society of America (JASA), 136 (3) , pp. 1101-1111.

PDF - Published Version
Download (1MB) | Preview


This paper extends a potential-based approach to active noise shielding with preservation of wanted sound in three-dimensional settings. The approach, which was described in a previous publication [Lim et al., J. Acoust. Soc. Am. 129(2), 717–725 (2011)], provides several significant advantages over conventional noise control methods. Most significantly, the methodology does not require any information including the characterization of sources, impedance boundary conditions and surrounding medium, and that the methodology automatically differentiates between the wanted and unwanted sound components. The previous publication proved the concept in one-dimensional conditions. In this paper, the approach for more realistic conditions is studied by numerical simulation and experimental validation in three-dimensional cases. The results provide a guideline to the implementation of the active shielding method with practical three-dimensional conditions. Through numerical simulation it is demonstrated that while leaving the wanted sound unchanged, the developed approach offers selective volumetric noise cancellation within a targeted domain. In addition, the method is implemented in a three-dimensional experiment with a white noise source in a semi-anechoic chamber. The experimental study identifies practical difficulties and limitations in the use of the approach for real applications.

Item Type: Article
Themes: Built and Human Environment
Schools: Schools > School of Computing, Science and Engineering > Salford Innovation Research Centre
Journal or Publication Title: The Journal of the Acoustical Society of America (JASA)
Publisher: Acoustical Society of America
Refereed: Yes
ISSN: 0001-4966
Related URLs:
Funders: Engineering and Physical Sciences Research Council (EPSRC)
Depositing User: YW Lam
Date Deposited: 19 Jan 2015 14:01
Last Modified: 16 Feb 2022 16:04
URI: https://usir.salford.ac.uk/id/eprint/33319

Actions (login required)

Edit record (repository staff only) Edit record (repository staff only)