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Combining Semantic Web Technologies with 
Evolving Fuzzy Classifier eClass for EHR-based 
Phenotyping: a feasibility study 

M. Arguello1, S. Lekkas1 J. Des2, M.J. Fernandez-Prieto3, L. Mikhailov1 

Abstract   In parallel to nation-wide efforts for setting up shared electronic health 
records (EHRs) across healthcare settings, several large-scale national and 
international projects are developing, validating, and deploying electronic EHR-
oriented phenotype algorithms that aim at large-scale use of EHRs data for 
genomic studies. A current bottleneck in using EHRs data for obtaining 
computable phenotypes is to transform the raw EHR data into clinically relevant 
features. The research study presented here proposes a novel combination of 
Semantic Web technologies with the on-line evolving fuzzy classifier eClass to 
obtain and validate EHR-driven computable phenotypes derived from 1956 
clinical statements from EHRs. The evaluation performed with clinicians 
demonstrates the feasibility and practical acceptability of the approach proposed. 

1 Introduction 

The adoption of electronic health records (EHRs) systems is at the heart of many 
international efforts to improve the safety and quality of healthcare [1]. A major 
benefit of EHRs as defined by the International Organisation for Standardisation 
(ISO) [2] is the ability to integrate patient’s clinical data across different 
healthcare institutions (e.g. primary and secondary care). Economically developed 
countries like Australia, New Zealand, United Kingdom, France, and United 
States have launched projects that aim at setting up shared EHRs among various 
healthcare providers to improve care coordination [3]. Nowadays, the most 
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prominent standards for the exchange of EHRs are: CEN/ISO EN13606 [4] and 
Health Level Seven (HL7) Clinical Document Architecture (CDA) [5].  

In parallel to the above-mentioned efforts to achieve interoperability of EHRs 
across healthcare settings, several large-scale national and international projects, 
like eMERGE [6], CICTR [7], and SHARP [8] are developing tools and 
technologies for identifying patient cohorts using EHRs data. A key component in 
this process is to develop, validate, and deploy electronic EHR-oriented phenotype 
algorithms that aim at large-scale use of EHRs data. 

EHR phenotyping uses data from EHRs with the aim of identifying individuals 
or populations with a condition or clinical profile, the so-called computable 
phenotype. EHR-driven phenotype definitions may include data from different 
sources, for example, clinical narratives. Shivade et al. [9] performed a literature 
review to pin down approaches that aim at automatically identifying patients with 
a common phenotype. According to their review, after the extraction of relevant 
terms and concepts from free text reports, either a rule- or machine learning-based 
model is used to classify patients into cohorts. Shivade et al. [9] emphasise that 
few studies use Semantic Web technologies for phenotyping. Likewise, Shivade et 
al. [9] stress that very few studies explore automated rule mining for phenotyping. 

The research study presented here proposes a novel combination of Semantic 
Web technologies (OWL [10], SPARQL [11], and SWRL[12]) with the on-line 
evolving fuzzy classifier eClass [13] to obtain EHR-driven computable 
phenotypes from 125 HL7 CDA consultation notes that contain 1956 clinical 
statements. The paper also reports the results of an evaluation performed, which 
demonstrates the feasibility and practical acceptability of the approach proposed 
that automatically generates Takagi-Sugeno fuzzy rules of first order [13]. 

2 Research Background and Related Work 

A phenotype is defined as: “the observable expression of an individual’s 
genotype” [14]. In turn, the genotype is defined as: “the specific DNA sequence at 
a given location” [15]. As Schulze and McMahon [16] highlight, while genotypes 
affect proteins, cells, and biological pathways; phenotypes are more easily 
observed as manifestations (symptoms and signs) of the presence of a disease. 
Hripcsak and Albers [17] notice that the emerging studies employing large-scale 
EHR data use a two-step approach: 1) a phenotyping or feature extraction step, 
which transforms the raw EHR data into clinically relevant features; and 2) more 
traditional analysis step, which uses the features extracted for 
discovering/measuring associations (e.g. genotype-phenotype associations if EHR 
are linked to DNA biorepositories or biobanks) or identifying individuals that 
match research criteria for clinical trials (i.e. assessing patient eligibility). 

Ontologies are the backbone of the Semantic Web, for they provide a shared 
understanding of a domain of interest and are particularly suitable for knowledge 
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exchange and integration. The key components of the Semantic Web include RDF 
[18] as the basic data model, OWL [10] for expressive ontologies, and SPARQL 
query language [11]. Until now, few recent studies adopt Semantic Web 
technologies for phenotyping.  Cui et al. [19] developed an ontology-based 
epilepsy cohort identification system. Pathak et al. [20] present a system 
architecture that leverages Semantic Web technologies for phenotyping and 
illustrate its viability with a case study for diabetes type 2 [21]. Pathak et al. [22] 
investigate how Semantic Web technologies (RDF and SPARQL) can aid the 
discovery of genotype-phenotype associations with EHR-linked to DNA biobanks. 
More specifically, the Pathak et al. [22] represent EHR data (diagnosis and 
procedures) in RDF and use federated queries (multiple SPARQL endpoints) to 
enable the discovery of gene-disease associations in individuals genotyped for 
Diabetes Type 2 and Hypothyroidism. 

Shivade et al. [9] recognise that extracting meaningful pieces of information 
from EHRs and consolidating them into a coherent structure is paramount for 
automatically identifying patient cohorts satisfying complex criteria. However, 
defining even a small number of phenotypes can take a group of institutions years 
[17]. Hripcsak and Albers [17] emphasise that despite advances in ontologies and 
language processing for phenotyping, the process of feature extraction remains 
largely unchanged since the earliest days [23]. 

Besides popular machine learning and statistical analysis methods for 
determining phenotypes, other approaches have also been explored [9]. Tatari et 
el. [24] used multi-agent fuzzy systems to identify patients with a high risk of 
breast cancer. It should be noted that fuzzy classification approaches, such as [25] 
[26], generally require the data to be processed in off-line mode, as a batch.  

eClass and FLEXFIS-Class are on-line evolving fuzzy classifiers [27]. Both of 
them follow a well-known option for achieving data-driven approximation models 
that lies in the usage of Takagi-Sugeno fuzzy models [28]. As Angelov et al. [27] 
remark: a) the term “evolving” means that new rules, structures, and so on are 
evolved during on-line processing based on ‘new’ data samples; and b) they 
should not be confused with “evolutionary” proposals (sometimes also called 
“evolving” [29]), which are usually processed in off-line mode, as a batch. 

Both eClass and FLEXFIS-Class methods are designed to work on a per-
sample basis and are thus one-pass and incremental [27]. They both are evolving 
in the sense that their structure (fuzzy rule-base) is not fixed, and can grow and 
shrink [13, 30]. Classifiers from the eClass family [13] can start learning “from 
scratch”, while classifiers from the FLEXFIS family [30] require a certain amount 
of data for initialisation prior to the on-line incremental operation. As having a 
clinician interpreting EHR data for a certain number of patients can be labour-
intense or unfeasible, eClass seems better suited for EHR-based phenotyping. 
eClass has been already successfully used with medical data [31, 32, 33]. To our 
best knowledge, eClass has not been used with EHR data. 
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3 Fuzzy Pattern Recognition for EHR-based Phenotyping 

The starting point of this research is a set of 125 consultation notes that are 
formatted according to the EHR standard HL7 CDA. HL7 CDA documents derive 
their machine processable meaning from the HL7 Reference Information Model 
(RIM) [34] and use the HL7 V3 [35] data types. The RIM and the V3 data types 
provide a powerful mechanism for enabling CDA’s incorporation of concepts 
from standard coding systems such as SNOMED CT [36] and LOINC [37]. 
According to CDA Release 2 [5], a CDA document section can contain a single 
narrative block (free text) and any number of CDA entries (coded information, 
e.g. HL7 RIM Observations). We built on our previous work, and thus, XML-
based CDA sections and entries are mapped to ontology instances in OWL 2 [10]. 

Pattern recognition can be seen as a sequence of some steps [38], namely 1) 
data acquisition; 2) feature selection; and 3) classification procedure. Figure 1 
shows an architecture overview of our approach with the key components 
involved. Each of the three major steps can be summarised as follows: 

1. Data acquisition – this step relies on the OWL converter (see Figure 1) to 
obtain a formal semantic representation of clinical statements as stated by 
the XML-based HL7 CDA standard specification. This step builds on our 
previous work [39], and takes advantage of the OWL's import capability 
to deal with ontological information from multiple documents. 

2. Feature selection – this step firstly uses the query engine ARQ for Jena 
[40] to execute SPARQL queries that retrieve individuals (ontological 
instances) with specific characteristics from the OWL model, and it 
builds on our previous work [39]. Secondly, the feature selection filter F-
score [41] is applied. 

3. Classification procedure – this step employs the evolving fuzzy classifier 
eClass, which exploits the first order Takagi-Sugeno (TS) fuzzy model 
[28], where the consequents of the fuzzy rule are linear classifiers. 
Although eClass makes sole use of its knowledge in its fuzzy form, a 
defuzzification process is also employed to achieve transparency. Despite 
this defuzzification process, the straightforward linguistic interpretability 
of the TS rules generated makes unavoidable for clinicians to possess 
some understanding of TS fuzzy models. And thus, the TS rule translator 
component is introduced to transform TS rules into SWRL [12] rule 
fragments according with some disease-specific indicators defined by an 
epidemiologist to aid the clinical interpretation of the TS rules. An XML 
converter is then added to convert the SWRL rule fragments into 
proprietary XML-based fragments that are visual gadget specific. The 
clinicians interact with visual gadgets from amCharts [42] and remain 
oblivious of the underlying transformations, i.e. from TS fuzzy rules of 
first order to SWRL rule fragments. 
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Figure 1 Approach overview: fuzzy pattern recognition for EHR-based phenotyping 

3.1 Fuzzy Pattern Recognition using eClass 

This section provides an overview of the evolving fuzzy classifier eClass 
introduced that tackles knowledge generation from EHR data streams in real-time 
and is used for EHR-based phenotyping. 

Let Z be a set of 125 HL7 CDA consultation notes with established diagnosis 
belonging to the Assessment and Plan sections. These established diagnosis (118 
CDA entries) are considered as known classification labels to classes from the set 
Ω = {w1,…,wC}. Clinical statements from the History of Present Illness section 
(405 CDA entries) or the Physical Findings section (1433 CDA entries) for each 
CDA consultation note can be mapped to numeric values of the features from a set 
X = {x1,…,xn}. Let Sn denote the feature space generated by the set X. The fuzzy 
pattern recognition task relies on fuzzy decision (FD) rules, where each input 
feature vector x ∈ Sn may be attached to a set of classes with different degrees of 
membership. 

The first order Takagi-Sugeno (TS) fuzzy models [28] are a special group of 
rule-based models with fuzzy antecedents and functional consequents that follow 
from the Takagi-Sugeno-Kang reasoning method [43]. The fuzzy rule base that 
describes the non-linear evolving classifier eClass can be described as a set of TS 
fuzzy rules of first order, where the consequents of the fuzzy rule are linear 
classifiers. These TS fuzzy rules are the FD rules for the fuzzy pattern recognition 
task and follow the form: 

Ri: IF (x1 is A1
i) AND .. AND (xn is An

i) THEN yc
i = fi (1) 

In formula 1, Ri is the ith TS fuzzy rule (FD rule). In the antecedent part (if-part) 
of the TS fuzzy rule x = [x1, x2, …, xn]T is the n-dimensional (input) feature vector 
(also known as data sample). A feature vector contains discrete numerical values 
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that are mapped to clinical statements from the History of Present Illness section 
or the Physical Findings section of a patient’s CDA consultation note. Aj

i denotes 
the antecedent fuzzy sets, j ∈  [1, n]. In the consequent part (then-part) of the TS 
fuzzy rule, yi = [y1

i, y2
i, …, yC

i] is the C-dimensional fuzzy output, i ∈  [1, NC]  
and c ∈ [1, C], where NC is the number of rules per class c and C is the number of 
classes from the set Ω. 

The structure of the eClass is thus formed by sets of TS fuzzy rules in such a 
way that there is at least one TS fuzzy rule per class. As suggested in [13, 44] and 
further employed in [32], the so called “winner-takes-all” defuzzification is 
applied to determine the correct class, which is the usual choice in classification 
problems. Hence, in equation 2, Classi is the class label of the ith TS fuzzy rule, 
which corresponds to the class c with the highest possibility yc

i. 
  Classi = argmax 1≤ c ≤ C (yc

i)     (2) 
For Gaussian-like antecedent fuzzy sets, a fuzzy set Aj

i of the ith TS fuzzy rule, 
j ∈  [1, n], is defined by the μi

j membership function (MF). The MF defines the 
spread of the antecedent and the zone of influence of the ith rule; where xi* is the 
prototype (centroid or focal point) of the ith TS fuzzy rule antecedent. Hence, μi

j 
measures the degree of proximity of a data sample xt to the prototype of a TS 
fuzzy rule. 

Generally, the problem of identification of a first order TS model is divided 
into two sub-tasks [28, 43]: 1) learning the antecedent part of the model (see 
equation 1), which consists of determination of the focal points of the rules and 
the spreads of the MFs; and 2) learning the parameters of the linear subsystems of 
the consequents. 

3.2 Introducing a Novel Online Feature Selection Filter 

How to successfully achieve dimensionality reduction in conjunction with eClass 
is another novelty of the current research study. In general, dimensionality 
reduction methods are said to follow two basic baselines [45]: filter methods and 
wrapper methods. However both of them present serious drawbacks when dealing 
with online data streams. A third alternative to tackle dimensionality reduction, 
which also appears in literature, is based on F-Score [41]. This study adopts the 
extended version of the F-Score method as proposed by Lekkas and Mikhailov 
[32], which can deal with more than two classes. What remains to be asked from 
the study presented in [32] is whether the temporal F-Scores can be further used as 
a criterion to reduce the original dimensionality of the problem in online mode. 
Given the set of scores for every tth input sample, how can the resultant filtered 
input be more meaningful for an eClass model to learn from? To answer this 
question, we propose a threshold based condition. Let Ft = {F1

t, …,Fn
t} be the set 

of F-Scores of the tth input sample xt, and ft the tth filtered input sample. The latter 
can be obtained by using the condition states in Formula 3.  
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∀j, j ∈ [1, n]: IF (Ft
j 
> h * max (Ft)) THEN (f t

j ß x t
j) ELSE (f t

j ß 0)
          

(3)
 Formula 3 expresses the following condition: every feature that has a score 

greater than a fraction of the maximum of the tth scores must be retained, 
otherwise it can be disregarded from the tth filtered input f. In formula 3, h is a 
threshold constant with reliable values in the range [0.001, 0.05]. The purpose of h 
is to restrain a portion of the maximum temporal score, leading to a very flexible 
online feature selection scheme. It is flexible because also considers when none of 
the features should be removed, for example when they scored alike. Hence, it is 
unlikely to cause loss of information as opposed to suddenly selecting the k top 
most-ranking features (according to what is suggested in [45]). 

3.3 TS fuzzy rules: clinically aided interpretation and visualisation 

The linguistic interpretability of the generated TS fuzzy rules by clinicians has 
been proved difficult as they are not computer scientists familiarised with fuzzy 
sets that involve cluster prototypes (focal points) or fuzzy membership function 
that defines the degree of closeness (or proximity) of a sample to a cluster 
prototype. The following excerpt exemplifies the straightforward linguistic 
interpretability of a TS fuzzy rule: 

IF (x1 isAround[+/- 0.468] 0.000) AND (x2 isAround[+/- 0.468] 0.000) AND  
… AND (x17 isAround[+/- 0.468] 0.000) THEN Class = 2 
In [46], different categories of clinical indicators can be found. According to 

[46], disease-specific indicators are diagnosis-specific. On the one hand, the 
consequents of the TS fuzzy rules used take into account the diagnosis, where the 
process of learning the consequent part of a fuzzy rule is supervised, and thus, the 
adoption of disease-specific indicators seems appropriate. On the other hand, the 
generated TS fuzzy rules can be plotted into 2D graphs to represent the cluster 
centroid and the cluster radius, and thereby, the introduction of the qualifiers 
distal and proximal to capture the graphical implications of the TS fuzzy rules can 
be seen as properly justified. In our proposal, we introduce “proximal disease-
specific indicators” and “distal disease-specific indicators”. However, these two 
terms are well known to epidemiologists. To illustrate this: ‘smoking’ is a well 
known proximal disease-specific indicator for lung cancer, while ‘working in a 
coal mine’ is a well known distal disease-specific indicator for lung cancer. Thus, 
the proximal and distal disease-specific clinical indicators introduced facilitate a 
quick understanding and easy access to key information capture in the evolving 
fuzzy rule-base that is dynamically obtained. 

With the aim of providing a clinical interpretation for the TS fuzzy rules that is 
easy to understand by clinicians, firstly, the set of TS fuzzy rules is transformed 
into a set of rules in SWRL [12]. This transformation is feasible due to common 
characteristics among the two rule languages: the rules are written as antecedent-
consequent pairs and the rules have conjunctive antecedents. For example, part of 
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an antecedent of a TS fuzzy rule can be the following: IF (x1 isAround[+/- 0.269] 
0.000) AND (x2 isAround[+/- 0.269] 0.000) AND (x3 isAround[+/- 0.269] 0.000) 
AND … To transform the above-mentioned TS fuzzy rule antecedent to a rule 
antecedent in SWRL, the features (variables) {x1, …, xn} are reinterpreted as 
SNOMED CT clinical findings and two OWL ObjectProperties are being 
introduced (isAround and hasFocalPoint). To further illustrate this: (x1 
isAround[+/- 0.269] 0.000) from a TS fuzzy rule is mapped to the following in 
SWRL: Lid_adhesions(?x1)  ^ isAround(?x1, 0.269)  ^ hasFocalPoint(?x1, 0.000). 

The success of Ajax [47], shorthand for Asynchronous JavaScript and XML, 
has brought an increasing amount of visual gadgets, most of them generic enough 
to be used in different contexts, where typically JavaScript provides the means to 
allow end-user interaction. An attractive feature that is increasingly commonly 
available among these visual gadgets, such as amCharts [42], is to distinguish 
between settings and data. This means that the settings could be configured just 
once for a particular use, and then, different data sets can be used without 
reconfiguration. Furthermore, settings and data are usually stored in two separated 
XML-based files, and therefore, it is possible to build on-fly XML-based data files 
upon user request. The current approach (see Figure 1) incorporates XML 
converters to “translate” fragments of SWRL rules into an XML-based file (XML-
based data files of visual gadgets). 

4 Experimental Results and Clinicians’ Evaluation 

The experiments conducted exploit the architecture described in section 3 (see 
Figure 1 for details), and adopts the buffering technique proposed by Lekkas and 
Mikhailov [33], where data samples are processed in time windows and not in 
batch. The buffering technique applied considers buffers that can store 5, 10, or 20 
data samples. 

The experiments performed consider two datasets:  
• Dataset I – the data samples contain discrete numerical values that are 

mapped to clinical statements from the History of Present Illness sections 
of patients’ CDA consultation notes; and  

• Dataset II – the data samples contain discrete numerical values that are 
mapped to clinical statements from the Physical Findings sections of 
patients’ CDA consultation notes.   

The clinical statements from both the History of Present Illness sections and the 
Physical Findings sections of patients’ CDA consultation notes mostly state the 
presence or absence of SNOMED CT clinical findings. And thus, the XML 
adapter (see Figure 1) translate the XML-based results of SPARQL queries into: 
a) variables that correspond to SNOMED CT clinical findings; and b) discrete 
numerical values associated to the variables that mostly correspond to the 
presence or absence of SNOMED CT clinical findings. 
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The two datasets (dataset I and dataset II) come from 125 anonymised CDA 
consultation notes that have established diagnosis (CDA entries) related to ‘Red 
Eye’ [48], which involves 8 diseases coded in SNOMED CT. For both datasets, 
eClass starts ‘from scratch’ with an empty fuzzy rule base and no pre-training; and 
subsequently, evolves its structure from the data stream. The execution time of the 
dataset I is 203 ms; while the dataset II is executed in 515 ms. This difference is 
due to differences in dimensionality. Dataset I has 17 features, while Dataset II 
has 37 features. Hence, for the same amount of data samples, it is expected that as 
the number of features increases, so does the execution time. Eight TS fuzzy rules 
are automatically generated for dataset I and nine TS fuzzy rules for dataset II.  

Figure 2 shows for dataset I the learning rate of eClass with the online feature 
selection filter F-score from [32] (left hand-side); the expansion rate of the fuzzy 
rule base (RB) for increasing time step (middle); and the area of dimensional 
reduction achieved using eClass with the filter F-Score (right hand-side), where a 
number of features may be discarded for every time-step.   

 

 
 
Figure 2 Dataset I – learning rate of eClass with F-Score; expansion rate of fuzzy RB; and 

area of dimensionality reduction 
 

Figure 3 shows for dataset II the learning rate of eClass (left hand-side) and the 
expansion rate of fuzzy RB for increasing time step (right hand-side).  
 

 
Figure 3 Dataset II – learning rate of eClass and expansion rate of fuzzy RB 
 
To validate the proposal, visual representations of the distal and proximal 

disease-specific indicators introduced are enabled by means of amCharts [42] 
visual gadgets. It was soon observed the utility of visualising more than one 
diagnosis simultaneously for ease of comparison. Figure 4 shows the visual 
representation of the distal disease-specific indicators obtained for three diagnoses 
related to ‘Red Eye’. The clinical indicators introduced aid the interpretation of 
the TS rules obtained for these three diagnoses from symptoms (CDA entries) of 
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the History of Present Illness sections of CDA consultation notes, i.e. EHR data. 
In order to measure the suitability of the EHR-based phenotypes obtained, Newton 
et al. [6] use precision and recall. In the same vein, we conducted an evaluation 
with a physician with more than fifteen years of experience in clinical practice and 
we calculated accuracy. Table 1 reports the accuracy of the TS rules obtained for 
the eight diseases (SNOMED CT established diagnoses) related to ‘Red Eye’ with 
EHR data, i.e. dataset I and dataset II. It should be noted that the physician 
understood the disease-specific indicators introduced with the help of an 
epidemiologist without any further explanation. At the moment of writing, more 
evaluations are planned. 

 

 
 
Figure 4 Cross-comparing distal disease-specific indicators for three diseases for ‘Red Eye’ 

Table 1. Physician evaluation – Accuracy of the TS rules automatically generated 

Established Diagnosis 
(SNOMED CT) 

Accuracy for Dataset I 
(TP + TN)/(P + N) 

Accuracy for Dataset II 
(TP + TN)/(P + N) 

Conjunctivitis 
Conjunctival hemorrhage 

Corneal Ulcer 
Herpes simplex dendritic keratitis 

Photokeratitis 
Scleritis and Episcleritis 

Acute angle-closure glaucoma 
Anterior uveitis 

82.35 % 
76.47 % 
94.12 % 
94.12 % 
88.23 % 
88.23 % 
94.12 % 
82.35 % 

83.78% 
97.29% 
81.08 % 
89.19 % 
94.59 % 
94.59 % 
78.38 % 
78.38 % 

5 Discussion 

The growing adoption of EHRs favours EHR-based genetic studies that 
aggregate/collect phenotype information as a by-product of routine healthcare. 
Dealing with EHRs data implies dealing with subjective information and missing 
data. Besides the heterogeneity in EHRs, one of the current challenges towards a 
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systematic study of clinical phenotypes is achieving standards-based executable 
phenotype definitions [49]. To further illustrate this: Richesson et al. [50] report 
seven phenotype definitions for diabetes mellitus, which are used for diabetes 
cohort identification. Actually, Richesson et al. [50] recognise that currently, there 
is a lack of standard EHR phenotype definitions for most chronic conditions, 
including diabetes.  

This research study adopts eClass, which can cope with real-time classification 
of streaming data from EHRs. Three main benefits arise from the experiments 
performed to prove the suitability of eClass for EHR-based phenotyping: 1) when 
using eClass the number of fuzzy rules as well as the number of classes (main 
diagnoses from EHRs) can change and do not need to be fixed; 2) eClass can start 
either “from scratch” (with an empty fuzzy rule base) or with some pre-specified 
set of fuzzy rules; and 3) if the class label is not provided, the existing fuzzy rule 
base can generate the predicted class, and thereby, a patient can be assigned to a 
certain cohort. These three benefits make of eClass a powerful tool for identifying 
patient phenotype cohorts using EHRs data. The main drawback of eClass, despite 
the defuzzification process, is the lack of straightforward clinical interpretability 
of the TS fuzzy rules generated, which makes unavoidable for clinicians to 
possess some understanding of TS fuzzy models.  

Our proposal incorporates Semantic Web technologies for: 1) extracting 
clinical statements (symptoms, signs, and established diagnoses) from EHRs, by 
means of SPARQL queries that retrieve OWL individuals (ontological instances) 
as part of the feature extraction step; and 2) aiding the clinical interpretation and 
visualisation of the evolving fuzzy rules by means of disease-specific indicators 
that are incorporated into the OWL ontology and exploited by the SWRL rules 
that are mapped to the TS fuzzy rules generated from the EHRs data.  

It should be noted that our approach advocates for managing the fuzziness 
directly within Semantic Web components, as Ciamarella et al. [51], instead of 
extending OWL or SWRL to deal with fuzziness. Examples of the latter can be 
found in Stoilos et al. [52] and Pan et al. [53].  

In our study, the disease-specific indicators introduced are incorporated into 
crisp OWL ontologies and SWRL rules. These clinical indicators emerge from 
close collaboration with epidemiologists and favour a straightforward validation 
by healthcare professionals of the EHR-driven computable phenotypes obtained. 
Nowadays, validation of EHR-based phenotypes remains an important aspect of 
their use.  

6 Conclusion 

The growing adoption of EHRs favours EHR-based genetic studies that 
aggregate/collect phenotype information as a by-product of routine healthcare. 
EHR phenotyping uses data from EHRs with the aim of identifying individuals or 
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populations with a condition or clinical profile, the so-called computable 
phenotype. The emerging studies for identifying computable phenotypes employ 
large-scale EHR data and use a two-step approach. Even with advances and new 
approaches, the first step that is feature extraction remains labour-intense and time 
consuming. Furthermore, the heterogeneity in EHRs means that phenotype 
validation is an important aspect of phenotype use, particularly when there is a 
lack of agreement about phenotype definitions for the same condition.  

The research study presented here proposes a novel combination of Semantic 
Web technologies (OWL, SPARQL, and SWRL) with the on-line evolving fuzzy 
classifier eClass to obtain and validate EHR-driven computable phenotypes 
derived from 125 HL7 CDA consultation notes containing 1956 clinical 
statements. The evaluation performed demonstrates the feasibility and practical 
acceptability of the approach proposed to automatically generate and validate 
EHR-based phenotypes. In our approach, the healthcare professionals remain 
unaware of the underlying technologies that support fuzzy pattern recognition to 
enable EHR-based phenotyping. Hence, consistent phenotype assessment may be 
feasible, fostering the possibility of reducing variation in phenotype definitions. 
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