A device for characterising the mechanical properties of the plantar soft tissue of the foot

Parker, DJ, Cooper, G, Pearson, S, Crofts, GS, Howard, D, Busby, P and Nester, CJ

http://dx.doi.org/10.1016/j.medengphy.2015.08.008

<table>
<thead>
<tr>
<th>Title</th>
<th>A device for characterising the mechanical properties of the plantar soft tissue of the foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Parker, DJ, Cooper, G, Pearson, S, Crofts, GS, Howard, D, Busby, P and Nester, CJ</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/id/eprint/37399/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2015</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
A device for characterising the mechanical properties of the plantar soft tissue of the foot

D. Parkera,*, G. Cooperb, S. Pearsona, G. Croftsa, D. Howardc, P. Busbyd, C. Nestera

a School of Health Sciences, University of Salford, UK
b School of Computing, Science & Engineering, University of Salford, UK
c School of Engineering, Manchester Metropolitan University, UK
d College of Science & Technology, University of Salford, UK

\section{Introduction}

Plantar soft tissues transfer forces to the skeleton without inducing shock loading or vibration [1,2]. To understand the relationship between plantar tissue structure and function, and inform intervention use when function is lost (e.g. in diabetes, aging [3]), the tissue properties must be characterised under functionally relevant conditions (i.e. in-gait).

In-vitro studies allow the use of accurate materials testing devices for characterisation of whole segment or isolated tissue properties [4], it is however likely that the inherent material properties of the tissues are changed, as a result of tissue breakdown, postmortem.

In-vivo studies characterise the tissue in its functional form (e.g. heel pad constrained by skin with regular blood perfusion to venous plexus) [5].

Previous in-vivo methodologies vary in control mechanism and in the accuracy and repeatability achieved for measurement of loading conditions and material deformation. Static measurements of force and tissue compression demonstrate the tissue capacity [6]. Manual or handheld application of compression force is restricted to low rates of displacement (0.6–6 mm s-1) and simple patterns of compression (approximately constant rate or sinusoidal) [7,8], neither of which mimic gait conditions. Uncontrolled compression experiments (pendulum and in-gait studies) produce functionally relevant loading but have not captured consecutive compressive cycles [9–11] or have required load and displacement data to be captured separately [12]. Controlled compression experiments (e.g. actuator driven) permit consecutive compressive cycles to be performed in a manner similar to that during walking. Despite this, there has been no attempt to replicate the loading experienced by the heel pad during gait [13,14].

Furthermore the compression surface used has a large effect on the tissue response. Indentation devices result in edge effects [14] and errors can be introduced due to misalignment of the indentation probe [15]. A compression surface larger than the segment (heel, forefoot) can ensure uniform loading, free of edge effects, similar to in vivo dynamics [7,13,16,17]. Single axis load cells have been used to capture vertical tissue loading in compression [18], due to their high accuracy and linearity combined with their capacity for high sampling frequency. When uniform compression is applied...
the measured load may not represent a single tissue's response. Some in-gait studies have used pressure measurement systems, with a grid of small discrete sensors [11,12], to calculate force over a small region of interest while loading a larger region. Although this provides the potential for greater region specificity, pressure systems are limited by their low sampling frequency and may not reflect the true applied load due to the restricted optimum loading range for these sensors [19]. To overcome these limitations within this study we developed a 2 part loading platen capable of applying uniform loading to the region of interest (heel, forefoot) whilst capturing load measurement via a single axis load cell specific to a central area (heel pad under calcaneus).

To derive both tissue stress and strain, realistic loading must be simultaneous with measurement of tissue displacement. Tissue displacement is measured indirectly in pendulum and indentation studies, and cannot isolate tissue compression from compression/motion of the leg as a whole [20]. Radiology methods permit tissue compression to be measured directly. Fluoroscopy and cineradiography are typically low resolution and restricted to a single layer between the bone and skin surface [21], while ultrasound permits real time image capture combined with high resolution imaging of multiple tissue layers during compression. Ultrasound probes can also be integrated within the compression surface of a loading device [8,22], and combined with load cells to provide synchronous measurement of applied load and tissue thickness [7]. Magnetic Resonance Imaging overcomes these issues [23], but real time dynamic tissue response cannot be measured. Within this study ultrasound was chosen as it permitted effective monitoring of the full compression profile at a high sampling frequency, whilst also enabling measurement of vertical displacement for multiple layers within the plantar tissues.

A device which can apply controlled and uniform tissue compression at high, 'gait like' compression rates is required to provide valid characterisation of plantar soft tissue properties. Therefore the aim of this study was to: (a) develop a device capable of compressing and measuring the plantar soft tissue in a controlled and repeatable manner at a range of compression rates/patterns including those experienced during gait; and (b) evaluate the performance of the device and validate this against a known standard.

2. Methods

2.1. Device design

The Soft Tissue Response Imaging Device (STRIDE) was developed to allow bulk compression of a plantar tissue and region (e.g. heel) and specific load measurement without inducing edge effects. To achieve this, a bespoke platen was designed (Fig. 1). The platen is divided into two parts; a large aluminium disk (150 mm diameter) with a central hole (32 mm diameter) supported on loadbearing columns, and a central small (30 mm diameter, 6 mm thickness) polypropylene homopolymer sonolucent ultrasound imaging window with 1 mm clearance around its circumference. The probe was coated with ultrasound gel and held in constant contact with the imaging window, a single reverberation artefact was present in the ultrasound image. The central window and the ultrasound probe are connected to the load-cell directly providing an independent load path so that only the force acting on the 30 mm imaging window is measured while compressing the whole foot region.

The platen is mounted on linear bearings and driven by a brushless linear servo-motor (BLMH142, Aerotech Ltd., UK) through a fixed vertical range of \pm15 mm making it easy to perform consecutive compression cycles of a specific tissue site (Fig. 2). The device was controlled via displacement, velocity and acceleration input to the
supplied drive software (Ensemble, Aerotech Ltd., UK). A Stage was constructed and an Aircast Boot (XP Walker Extra Pneumatic, DJO, LCC, USA) with inflatable bladders was adapted for use as a foot brace to allow positioning directly above the loading platen (Fig. 2). The brace position could be adjusted horizontally and vertically \((x, y, z)\) to permit location of the anatomical site being imaged and thereafter locked. A full health and safety review was conducted to comply with institutional regulations.

2.2. Data collection and processing

The ultrasound system consisted of a 5.5 MHz ultrasound Probe in B-Mode (LAS23, MyLab 70, Esaote, Italy) with capture frequency of 201 Hz, capable of imaging the plantar soft tissue to a maximum thickness of 40 mm with a measurement accuracy of 1.75% \((\pm 0.7\text{ mm})\) as reported by the manufacturer. Ultrasound videos were split into static images (frames) and tissue thickness was determined for each frame, using an algorithm written in Python to match an adjustable curve template to the profile of the calcaneal tuberosity (Fig. 3). The distance between the matched template and the skin surface was measured for each image to record tissue thickness over time. A precision load cell with a maximum capacity of 2225 N (TC34, Amber Instruments, UK) and linearity of 0.02% (4.45 N) was used to capture the force response of the plantar tissue for a single axis (compression). A Linear Variable Differential Transformer (LVDT) (S-Series, Solartron, UK) with range of 50 mm and linearity of 0.2% (0.1 mm) provided a measurement of the platen’s vertical displacement. Data for the load cell and LVDT were synchronously logged to PC at 1000 Hz capture frequency via LabView (National Instruments, UK).

2.3. Drive profiles

Two drive profiles were used; a 5 mm s\(^{-1}\) Triangle-Wave Profile (T-Wave) and an impact like Vertical Gait Profile (V-Gait) (Visible in Fig. 4). The T-Wave was based on previous low rate, controlled compression experiments [7,14]. The V-Gait was derived from the vertical component of motion capture data for a marker placed on the posterior aspect of the heel and had cycle duration of 1 s. Velocity and acceleration profiles were calculated as the first and second derivatives for the displacement profile. A peak velocity of 0.6 m/s and a peak acceleration of 15 m/s\(^2\) occurred at the transition peak displacement. These values are much greater than those derived by single Sine-wave fits to the literature data, and it is likely that this is due to the reduced time to peak displacement in the motion capture data (0.05 s) compared to the literature data (0.2 s) [9,24]. This produced a loading profile similar to previous pendulum and in-gait studies [20,21,24]; but with a greater degree of control and repeatability, and permitting consecutive compressive cycles to be performed. All profiles included periods of pre/post compression motion to allow adequate loading/unloading velocities to be achieved at the points of impact and offloading.

2.4. Device evaluation

2.4.1. Calibration

The load cell was calibrated statically using standard weights within the range of operation (0–250 N). These weights were then reapplied to assess the accuracy and linearity of the measured load. To remove the effects of mechanical friction and inertia, created when accelerating the suspended STRIDE platen, dynamic calibration profiles were applied, which were the average cycle load measured for 100 cycles of platen motion in free air. To correct for systematic error in the load cell measurements a secondary correction factor in the form \(y = (x−1.58)^*\) 1.05 was applied. The LVDT was calibrated statically using metric gauge blocks for the operational range (0–30 mm). The device was then moved at 3 mm steps through its full range to assess the linearity and accuracy of platen displacement.

2.4.2. Input/output precision

To assess the ability of the drive mechanism and coupling systems to conform to the input drive profile, data for vertical displacement of the device platen was collected using the LVDT (Fig. 4). 100 displacement cycles were run for both drive profiles, in free air and during compression of a standard material (Thermoplastic rubber – Shore 25).

2.4.3. Validation

To validate the force and displacement measurements recorded in compression, material tests were conducted using STRIDE and then repeated on a Houndsfield tensometer (Model H10KS) for two standard materials (Thermoplastic rubber of Shore A25 and A35) selected to match reported hardness values for the plantar soft tissue [25]. Prior to testing the thickness was measured using a digital caliper. The material was then placed into the testing device and a pre-load of 1 N was applied to ensure firm contact. Each material was tested at three displacement velocities (0.5 mm s\(^{-1}\), 1 mm s\(^{-1}\), 2 mm s\(^{-1}\)) for 10 cycles of a triangle wave with amplitude of 10 mm. Between tests each material was allowed to return to its original thickness.

2.4.4. In vivo plantar soft tissue testing

To provide an initial assessment of the devices application to in vivo plantar soft tissue testing the right feet of 5 healthy individuals were tested. The participants were of a similar age and BMI (Table 1), and recruited from the population at the University of Salford. Participants had no history of foot problems or surgery, and no history of systemic pathophysiological disease. Ethical approval was given by the local ethics committee and each participant provided written informed consent. The right leg was braced, and the participant was made to stand, positioned such that the heel and straight leg were directly above the imaging window of the STRIDE platen (Fig. 2). The
STRIDE platen was then brought into contact with the plantar surface of the heel to permit a sagittal plane ultrasound image of the heel fat pad to be obtained and the apex of the calcaneal tubercle imaged. While recording ultrasound images, a small displacement (~5 mm) was applied to compress the tissue and the platen then lowered until tissue contact was lost. The final image before loss of contact was used to measure unloaded tissue thickness, based on the protocol of Cavanagh (1999). Dynamic tissue tests were conducted as three separate trials, each consisting of two consecutive compressions, resulting in six compressions in total for each loading condition (T-wave, V-Gait). The two compressions in each trial were made in close succession so that small intra-trial differences were expected. However, between trials the tissue was fully offloaded and allowed to recover to its unloaded state leading to the possibility of larger inter-trial differences.

3. Results

The load cell calibration was linear (Pearson’s $R^2 = 0.999$), with a mean absolute error across all points 0.15 N (SD = 0.07 N), representing 0.06% of the operational range, the maximum error was 0.25 N. For the LVDT the calibration was linear (Pearson’s $R^2 = 0.999$) and the mean absolute error across all points 0.04 mm (0.02 mm SD), 0.24% of the operational range, and the maximum error was 0.07 mm. The device reproduced input profiles with NRMSE of < 1.7% of the displacement range across the whole loading profile (Table 2) and ICC’s > 0.99 for all conditions. Errors were highest at the transition from upward to downward motion of the platen which represented the point of greatest acceleration (Fig. 4). The target displacement error, captured at this transition, was < 3.4% of the displacement range for all conditions. Absolute measures of target error show that the T-wave trials were consistently below the target, while gait simulation trials consistently exceeded the target (Table 2). Acceptable agreement was found between STRIDE and Houndsfield tensometer for measured displacement in all conditions with an NRMSE < 1.4% for the displacement range (Table 3). However, the measured load displayed a greater variance between the two measurement devices with NRMSE < 9% for the measured range (Table 3) the RMSE ranged from 2–5 N.
inter-trial variance (NRMSE). The measured load was reasonably repeatable with greater variance observed inter trial (NRMSE < 0.95); CMC > 0.99) in both T-Wave and V-Gait conditions (Table 4, Fig. 5). Measures of tissue compression derived from ultrasound imaging had acceptable repeatability intra trial (NRMSE < 1.95%; CMC > 0.98), however a greater variance was observed inter trial (NRMSE < 5.2%; CMC > 0.70) (Table 4, Fig. 5). The measured load was reasonably repeatable with inter-trial variance (NRMSE < 4.1%; CMC > 0.83) being greater than intra trial variance (NRMSE < 1.6%; CMC > 0.99) for both T-Wave and V-Gait Conditions (Table 4, Fig. 5).

4. Discussion

4.1. Device development

The level of control and range of profiles which can be accurately implemented using STRIDE represents a clear advance from previous in-vivo methods of controlled compression. These were limited across the whole load deformation curve. For both load and displacement in all conditions CMC values were high (> 0.95). Platen motion was highly repeatable during tissue compression, for both the intra- and inter-trial assessment (NRMSE < 0.11%; CMC > 0.99) in both T-Wave and V-Gait conditions (Table 4, Fig. 5).
to simple compression profiles [26–28] or uncontrolled impact style conditions [5,20]. The increased control permitted use of a V-Gait profile which closely reflects the velocities and displacements seen in gait, whilst also enabling capture of the tissues response for consecutive compressive cycles.

The previously demonstrated methods for isolation of tissue specific characteristics have been limited by the inclusion of edge effects resulting in unrealistic tissue compression [14,15,29]. Therefore, the compressive platen of STRIDE was developed to permit bulk compression of the tissue (as per gait) whilst retaining high regional specificity. This unique feature allows for effective recording of phenomena such as stress concentrations, which occur beneath the bony prominences in the foot, during compression [30,31]. For the calcaneus, the region of tissue which lies directly beneath the calcaneal tubercle will receive the greatest compressive force, due to the concentrated stress, while the regions surrounding this will receive a lesser distributed force [31]. It is therefore necessary to isolate the response of the tissue in this region. The use of ultrasound in series with region specific load measurement also provides the capacity to accurately measure tissue strain and stress synchronously, specific to a region of interest.

The device setup provides only a single axis of motion and thus compression imposed by the STRIDE platen represents a simplified version of gait dynamics. To limit the effect of the simplified dynamics vertical motion was selected, as this represents the major compressive component of gait. The device bracing was shown to be compliant during tissue compression, which prevents over compression of the foot; however this compliance is also likely to have resulted in sub-maximally compressed tissue. Compression or strain error have previously been shown to considerably affect the measured peak stress and thus care should be taken when comparing between trials with variable peak strain [32].

4.2. Device performance

Accuracy was within the range reported previously [22,28,29]. Input/output precision tests demonstrated that the device has an average displacement error of 0.225 mm (1.5% for 15 mm range) for compressive trials. This is not as good as the average accuracy reported previously [28,29], but in these studies displacement velocities were much lower than the present study, which attempted to replicate functional loading [33] (0.5–30 mm s\(^{-1}\), compared to 5 mm s\(^{-1}\) – peaks of 300 mm s\(^{-1}\)). For the V-Gait profile in free-air absolute target error was positive suggesting over compression would occur during tissue trials. However this error was reduced during material compression trials and it is expected that the impact of the platen with the material reduces actuator work resulting in improved agreement to the input profile. Even so to ensure safety during participant trials the bracing system was designed to be slightly compliant and permit quick release, reducing risk of over compression of the foot.

STRIDE was shown to be capable of replicating the motion of the Houndsfield tensometer with minimal differences (NRMSE < 1.4%) for all conditions meaning the materials were subjected to equal test conditions. Differences were observed between devices for the measured load response (2–5 N RMSE), which suggests some limitations to the capacity to measure the load response accurately with STRIDE. A large component of this error is expected to be the effect of load cell accuracy (±4.45 N) for the narrow testing range used (0–50 N). However the CMC values were still very high (>0.95) suggesting a consistent pattern of response was seen with both devices (Table 4). The Houndsfield tensometer was only capable of reproducing simple loading profiles with velocities lower than that achievable using STRIDE, as such a validation of the V-Gait Sim profile was not possible.

The high levels of repeatability of platen motion during in-vivo tissue testing, for both T-Wave and V-Gait profiles, confirms the capacity of STRIDE to perform tissue compression at a functionally relevant level (Fig. 5). Combined with the high temporal resolution available with STRIDE, this device offers an opportunity to fully explain the rate dependent nature of the plantar soft tissue in-vivo. High intra trial repeatability was observed for the response measures (load and tissue compression), within the range of previous studies which assessed cycle to cycle variance [15,34], and sufficient to measure the force displacement response of the tissue in compression. Within day, inter trial the observed variance was greater which may be the result of participant repositioning between trials, or foot motion within the brace system during the dynamic compressive tests. However, this increased variance (~5%) was still within the range observed in previous studies [22,28]. Participant movement during the pre/post compression phases may have affected tissue compression, however the peak tissue compression (~6 mm –0.3 strain) achieved for both loading profiles is within the range observed for previous studies [21,24,35].

The biomechanical assessment of the plantar tissue has primarily focussed on the vertical response, and does not assess horizontal forces associated with bulging of the heel pad [11,18]. This bulging is a result of the heel pads fibrous septae which create enclosed chambers, acting as hydrostats under compression [36]. As the vertical
compressive limit is reached the fibro-elastic septae becomes the dominant resistive force [11]. The use of ultrasound imaging within STRIDE permits tracking of this horizontal movement and warrants the capacity to apply bulk compression of tissue (as per gait), whilst retaining high regional specificity, permits effective load and tissue thickness measurement, with acceptable repeatability across all measurements (NRMSE < 5.2%). This enables participant specific characterisation of tissue properties in compression using STRIDE.

Funding

This work was funded by SSL International Ltd. They sanctioned the development of the device but took no role in the work within this study.

Ethical approval

Ethical approval was given by the University of Salford ethical review panel.

Conflict of interest

The authors of this manuscript have no conflict of interest relevant to this work.

Acknowledgements

The authors would like to thank Mr. C. Smith for construction of the validation frame.

References