Hasan, A and Meziane, F ORCID: https://orcid.org/0000-0001-9811-6914
2016,
'Automated screening of MRI brain scanning using grey level statistics'
, Computers & Electrical Engineering, 53
, pp. 276-291.
|
PDF
- Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives 4.0. Download (778kB) | Preview |
Abstract
This paper describes the development of an algorithm for detecting and classifying MRI brain slices into normal and abnormal by relying on prior-knowledge, that the two hemispheres of a healthy brain have approximately a bilateral symmetry. We use the modified grey level co-occurrence matrix method to analyze and measure asymmetry between the two brain hemispheres. 21 co-occurrence statistics are used to discriminate the images. The experimental results demonstrate the efficacy of our proposed algorithm in detecting brain abnormality with high accuracy and low computational time. The dataset used in the experiment comprises 165 patients with 88 patients having different brain abnormalities whilst the remainder do not exhibit any detectable pathology. The algorithm was tested using a ten-fold cross-validation technique with 100 repetitions to avoid the result depending on the sample order. The maximum accuracy achieved for the brain tumours detection was 97.8% using a Multi-Layer Perceptron Neural Network.
Item Type: | Article |
---|---|
Schools: | Schools > School of Computing, Science and Engineering > Salford Innovation Research Centre |
Journal or Publication Title: | Computers & Electrical Engineering |
Publisher: | Elsevier |
ISSN: | 0045-7906 |
Related URLs: | |
Funders: | Non funded research |
Depositing User: | Prof Farid Meziane |
Date Deposited: | 29 Feb 2016 13:42 |
Last Modified: | 14 Nov 2019 12:15 |
URI: | http://usir.salford.ac.uk/id/eprint/38011 |
Actions (login required)
![]() |
Edit record (repository staff only) |