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The evaluation of the far-field integral in the Green’s function representation
for steady Oseen flow
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Consider the Green’s function representation of an exterior problem in steady Oseen flow. The
far-field integral in the formulation is shown to be zero. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2388248�

I. INTRODUCTION

Oseen1 gives the Green’s function representation of the
exterior problem in steady Oseen flow, but assumes that the
far-field integral in the formulation is zero without proof. It
is essential to show that this integral is zero for the Oseen
representation to be valid. In low Reynolds number flow ap-
plications, the Oseen equations are used within singular per-
turbation theory as a far-field matching to Stokes flow2,3. In
this case, only the singular point solution is required and so
the integral is satisfied trivially. However, there are at least
two increasingly important applications of the Oseen equa-
tions for high Reynolds number �in the sense that the Rey-
nolds number is much greater than one� flows.

The first application is the decay of the trailing vortex
wake behind an aircraft. This has attracted significant recent
interest with the advent of superheavy class aircraft, such as
the Airbus A380, and the stipulation of safe separation dis-
tances between aircraft flying through this wake during land-
ing and takeoff. However, the line vortex in inviscid flow has
a constant strength and profile. So in order to model vortex
decay, viscosity must be modelled which diffuses the vortic-
ity. Batchelor4 considers far-field Oseen flow to represent the
trailing vorticity as the Oseen formulation is a linearization
to a uniform stream of the Navier-Stokes equations, and so
retains the viscous term. The Batchelor vortex has been the
focus of work on stability analysis for the trailing vorticity, a
review given by Delbende.5 Chadwick6 shows that the horse-
shoe vortex in Oseen flow, whose arms are trailing line vor-
tices, is equivalent to a spanwise distribution of lift Oseenlets
�a lift Oseenlet is the singular point lift solution in Oseen
flow�. Furthermore, the trailing vortex behind an aircraft has
been developed from rollup of the vortex sheet, and even at
large distances behind an aircraft the representation by a line
vortex is insufficient and instead a distribution is required
�see Ref. 7, chapter 13�. The requirement for a distribution of
singular solutions means that an integral distribution of sin-
gular solutions over a surface, as formulated by Oseen, is
necessary. In this case, it is then necessary to show that the
far-field integral arising from Oseen’s representation is zero.

The second application is in the field of slender body
theory and related theories. The usual approach is for inner
and outer expansions around the boundary layer, with the
inner region being purely viscous. However, Chadwick8 pre-
sents a slender body theory in Oseen flow where it is as-

sumed that for a streamlined body satisfying a Kutta condi-
tion at the trailing edge or end section, that Oseen flow �the
perturbation to a uniform stream� is valid as an outer expan-
sion. In the application to lift on a slender wing, Chadwick9

shows that the retention of the viscous terms in the formula-
tion are important for the lift calculation and to ensure the
wake is regularized �and so is not singular as in the inviscid
flow representation�. Again, the Oseen representation is
given by a distribution of solutions over a Green’s integral
surface rather than reducing to point solutions, as in the case
of low Reynolds number singular perturbation theory.

It is therefore essential to show that the far-field Green’s
integral arising from Oseen’s representation of the Oseen ve-
locity is zero, for the Oseen representation to be valid for
both these important problems. One would assume that a
likely way to proceed would be to represent the far-field
integral surface as the surface of a sphere, and divide this
surface into an interior wake surface and exterior surface
where appropriate approximations can be made. However,
when this is done then it can only be shown that the far-field
integral is bounded by a constant. So, the idea is to find an
appropriate division of the far-field surface such that the far-
field integral tends to zero as the radius of the sphere tends to
infinity. In the present paper, this is achieved by dividing the
surface of the sphere into three surfaces by: the intersection
of a cone subtended by a small angle and enclosing the
wake; and also by the intersection of the wake boundary.
Making appropriate approximations within the three regions
then enables us to show that the far-field integral in the
Green’s function formulation of steady Oseen flow is indeed
zero as expected.

II. THE OSEEN FORMULATION

The steady Oseen equations �see Ref. 1, pp. 30-38� for
the Oseen velocity u, a perturbation to the uniform stream
velocity U in the x1 direction such that the Cartesian coordi-
nates are given by �x1 ,x2 ,x3�, and Oseen pressure p are

�U
�u

�x1
= − �p + ���2�u, � · u = 0, �1�

�2p = 0, �2�

where � and � are the fluid density and dynamical coefficient
of viscosity, respectively, and both are assumed to be con-
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stant. � denotes the gradient operator and �2 is the Laplacian
operator. As r→�, then u, p→0. The Oseen velocity is then
represented by an integral distribution of Green’s functions
called Oseenlets or Oseen fundamental solutions.1 Consider
four solutions to the Oseen equations �u , p� and �u�m� , p�m��,
1�m�3, for the Oseen velocity and pressure, respectively.
From �1� we find that

�

�y1
��Uui�y�ui

�m��x − y��

= −
�

�yi
�p�y�ui

�m��x − y� + ui�y�p�m��x − y�� + �
�

�yj

�� �ui

�yj
�y�ui

�m��x − y� − ui�y�
�

�yj
ui

�m��x − y�� �3�

for a point y=x in the fluid. Applying Gauss’s theorem to the
volume integral of the above expression gives

	 	
Sy


p�y�uj
�m��x − y� + uj�y�p�m��x − y�

+ ��ui�y�
�

�yj
ui

�m��x − y� −
�

�yj
ui�y�ui

�m��x − y��
+ �Uui�y�ui

�m��x − y�� j1�njds = 0�m�, �4�

where Sy is a surface enclosing a volume of fluid, and the
integration is over the y variable. The Green’s functions can
be represented by the potentials � and � such that

ui
�m��z� =

���m�

�zi
+

���m�

�zi
− 2k�*�mi,

�5�

p�m��z� = − �U
���m�

�z1
,

where k=�U /2� and z=x−y, and

��m��z� =
1

4	�U

�

�zm
ln�R − z1� ,

��m��z� = −
1

4	�U
e−k�R−z1� �

�zm
ln�R − z1� , �6�

�*�z� =
1

4	�U

e−k�R−z1�

R
,

where �z�=R. So from �6�,

��*

�zm
=

���m�

�z1
.

Substitute the Green’s functions into �4� such that Sy consists
of three surfaces: S0, which encloses a body surface SB, S�,
which is a sphere radius �→0 about the point z=x, and SR,
which is a sphere radius R→� �Fig. 1�.

Following1 the contribution from the surface S� is um�x�,
and if the contribution from the surface SR is assumed to be
zero, then we get the Green’s function integral representation
in Oseen flow:

um�x� = −	 	
S0


p�y�uj
�m��x − y� + uj�y�p�m��x − y�

+ ��ui�y�
�

�yj
ui

�m��x − y� −
�

�yj
ui�y�ui

�m��x − y��
+ �Uui�y�ui

�m��x − y�� j1�njds . �7�

III. EVALUATION OF THE FAR-FIELD INTEGRAL

The integration over the surface SR is given by

	 	
SR


p�y�uj
�m��z� + uj�y�p�m��z�

+ ��ui�y�
�

�yj
ui

�m��z� −
�

�yj
ui�y�ui

�m��z��
+ �Uui�y�ui

�m��z�� j1�njds . �8�

The surface SR is such that �z�=R, and we want to show that
the integration over this surface tends to zero.

Taking the modulus of �8� and bringing this modulus
into the integrand, then we can show that �8� tends to zero if

lim
R→�

��uj�y��max	 	
SR

�ui
�m��y��ds� = 0ij

�m� �9�

since

 �ui
�m��z�
�yj

 � Aj�ui
�m��z��

for some constant Aj, and since �p�m��z���1/4	R2, and
ui�y�→0 as R→�. �In �9�, we define 0ij

�m�=0 for all 1
� i , j ,m�3.�

To evaluate �9�, the integration surface is divided into
three �see Fig. 2�:

1. The surface Swake such that �z�=R and r=�z2
2+z3

2

�a0
�z1 /k, 0
a0�1;

2. the surface Scone−wake such that �z�=R and a0 /�kz1��
��0, 0
�0�1;

FIG. 1. The division of the surface of the sphere SR.
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3. and the surface SR−cone such that �z�=R and ���0,

where a0 and �0 are constants, and the Cartesian and spheri-
cal coordinate are such that z1=R cos �, z2=R sin � cos ,
z3=R sin � sin . The approximations applied to the funda-
mental solutions within these three regions is given next.

The surface SR is divided into the three areas SR−cone,
Scone−wake, and Swake, such that the following approximations
are made in each area.

Area SR−cone: Within this area ���0 and so the approxi-
mation

1

R − z1



b0

R
, b0 =

1

1 − cos �0
�10�

holds.
Area Scone−wake: In this region r /z1��0 and so we can

apply the approximation

R − z1 = z1�1 +
r2

z1
2�1/2

− z1 =
r2

2z1
−

r4

8z1
3 + O�r6/z1

5� , �11�

where O means “of order of.” So,

e−k�R−z1� = e−�kr2/2z1��1+O�r2/z1
2��

= e−kr2/2z1�1 + O�r2/z1
2��−kr2/2z1

= e−kr2/2z1�1 + o�r2/z1
2�� �12�

where o means “of order less than,” since �1+a�b+1�1 and
so �1+a�−b
1+a for a�0, b�0. Finally, an element of
area �s over the surface is approximated by

�s = R2 sin ���� = r�r��1 + O�r2/z1
2�� . �13�

Area Swake: In this region kr2 /2z1�a0
2 /2�1, and so

from Ref. 10, p. 69, Sec. 4.2.1,

e−k�R−z1� = 1 − k�R − z1� +
k2�R − z1�2

2!
+ O��R − z1�3�

= 1 −
kr2

2z1
+

k2r4

8z1
2 + O�r6/z1

3� , �14�

since

O� r2

z1
2� � O� r2

z1
�

in the far-field region Swake as z1→�.
The integral calculation of �9� is now evaluated over the

three regions of the integral surface for the varying index
values 1� i ,m�3. However, since ui

�m�=um
�i�, u2

�1� has similar
form to u3

�1�, and u2
�2� has similar form to u3

�3�, then it is suf-
ficient to consider the four permutations �i ,m�= �2,3�, �2,2�,
�1,2�, and �1,1�.

Permutation �i ,m�= �2,3�: Over the area SR−cone, apply-
ing the approximation �10� to the Oseenlet given by �6� in
the region SR−cone gives

 ���2�

�z3
 


b0�1 + b0�
4	�UR2 �15�

and so

lim
R→�

	 	
SR−cone

 ���2�

�z3
ds 


b0�1 + b0�
�U

. �16�

Similarly

 ���2�

�z3
 


b0�1 + kR + b0�
4	�UR2 e−kR/b0 �17�

and so

lim
R→�

	 	
SR−cone

 ���2�

�z3
ds = 0 �18�

and so

lim
R→�

�uj�y��max	 	
SR−cone

�u3
�2��z��ds = 0 �19�

since �uj�y��max→0 as R→�.
Over the area Scone−wake, applying the approximation �11�

to the Oseenlet given by �6� in the region Scone−wake gives

 ���2�

�z3
 


1

	�Ur2 �20�

and so using the approximation for elements of the surface
�13� gives

lim
R→�

	 	
Scone−wake

 ���2�

�z3
ds 
 	

0

2	 	
a0�z1/k

�0z1 a2

	�Ur
drd

=
2

�U
�ln��0z1�

− ln�a0
�z1/�k�� �21�

for some constant a2. We note that if this integration was
continued into the wake then the right-hand side of �21�
would approach infinity and no bound would be obtained,
which demonstrates the necessity for dividing the surface of
the sphere up such that there is a wake region. Similarly

FIG. 2. The surface Sy.
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 ���2�

�z3
 


a3

z1
e−kr2/2z1 �22�

for some a3 independent of the coordinate variables, since
1/r2�a0

2 /z1. So using the approximation for elements of the
surface �13� gives

lim
R→�

	 	
Scone−wake

 ���2�

�z3
ds 
 	

0

2	 	
a0�z1/k

�0z1 a3

z1
e−kr2/2z1rdrd

=
2	a3

k
e−ka0

2/2, �23�

which is bounded. In the far field, we expect the fluid veloc-
ity uj�y� to behave as a combination of the fundamental so-
lutions uj

�m��y� to leading order. So we expect that
�uj�y��max→0 faster than 1/ ln R as R→�. This means that
combining the results �21� and �23� we expect

lim
R→�

�uj�y��max	 	
Scone−wake

�u3
�2��z��ds = 0. �24�

Over the area Swake, making use of the approximation
�11�, gives an approximation for ��2� in this region

��2� =
1

4	�UR

z2

R − z1
=

z2

2	�Ur2�1 +
r2

2z1
2�−1

��1 −
r2

4z1
2�−1

�1 + O�r4/z1
4��

=
z2

2	�Ur2�1 −
r2

4z1
2��1 + O�r4/z1

4�� .

�25�

Further, making use of the approximation �14� for e−k�R−z1� in
this region then gives

��2� + ��2� =
z2

2	�Ur2� kr2

2z1
−

k2r4

8z1
2 + O�r6/z1

3�� , �26�

so

�

�z3
���2� + ��2�� = −

k2z2z3

8	�Uz1
2 �1 + O�r2/z1�� . �27�

Therefore

lim
R→�

	 	
Swake

�u3
�2��z��ds

= lim
R→�

k2

4�Uz1
2	

0

a0�z1

r3dr�1 + O�r2/z1��

=
k2a0

4

16�U
�1 + O�a0

2�� . �28�

Combining all results together over the three surfaces SR−cone,
Scone−wake, and Swake on the surface of the sphere SR then
gives

lim
R→�

�uj�y��max	 	
SR

�u3
�2��z��ds = 0 �29�

as expected.
Permutation �i ,m�= �2,2�: Over the area SR−cone, fol-

lowing the same approximations as for the permutation
�i ,m�= �2,3�, then in this region we have

 ���2�

�z2
 �

a4

R2 ,  ���2�

�z2
 �

a5

R
e−kR/a0, ��*� �

a6

R
e−kR/a0

�30�

for some constants a4, a5, and a6. So, using the same argu-
ment as for the permutation �i ,m�= �2,3�, then in this region
we have

lim
R→�

�uj�y��max	 	
SR−cone

�u2
�2��z��ds = 0 �31�

since �uj�y��max→0 as R→�.
Over the area Scone−wake, following the same approxima-

tions as for the permutation �i ,m�= �2,3�, then in this region
we have

 ���2�

�z2
 �

a7

r2 ,  ���2�

�z2
 �

a8

z1
e−kr2/2z1,

��*� �
a9

z1
e−kr2/2z1 �32�

for some constants a7, a8, and a9. So, using the same argu-
ment as for the permutation �i ,m�= �2,3�, then in this area
we have

lim
R→�

�uj�y��max	 	
SR−cone

�u2
�2��z��ds = 0 �33�

since �uj�y��max→0 faster than 1/ ln R as R→�.
Over the area Swake, making use of the approximations

�11� for ��2� and the approximation �14� for e−k�R−z1� in this
region gives

�

�z2
���2� + ��2�� =

�

�z2
� kz2

4	�Uz1
�1 + O�r2/z1���

=
k

4	�Uz1
�1 + O�r2/z1�� . �34�

Therefore

lim
R→�

	 	
Swake

�u2
�2��z��ds =

ka0
2

4�U
�1 + O�a0

2�� , �35�

which is bounded. Also in this region, ��*��a10/z1 and so
combining all results together over the three surfaces SR−cone,
Scone−wake, and Swake on the surface of the sphere SR then
gives

lim
R→�

�uj�y��max	 	
SR

�u2
�2��z��ds = 0 �36�

as expected.
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Permutations �i ,m�= �1,1� and �i ,m�= �1,3�: The
analysis for these permutations give similar bounds, with the
added simplification that �

�z1
ln�R−z1�=−1/R. This means

that the condition �9� given by

lim
R→�

��uj�y��max	 	
SR

�ui
�m��y��ds� = 0ij

�m� �37�

holds for all i , j, and m. So the evaluation of the far-field
integral in the Green’s function representation for steady
Oseen flow is zero as expected.
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