University of

Salford

MANCHESTER

Finite element simulation of

nonlinear convective heat and

mass transfer in a micropolar
fluid-filled enclosure with
Rayleigh number effects

Bhargava, R, Sharma, S, Bhargava, P, Beg, OA and Kadir, Ali
http://dx.doi.org/10.1007/s40819-016-0180-9

Title Finite element simulation of nonlinear convective heat and
mass transfer in a micropolar fluid-filled enclosure with
Rayleigh number effects

Authors Bhargava, R, Sharma, S, Bhargava, P, Beg, OA and Kadir,
Ali

Type Article

URL This version is available at:

http://usir.salford.ac.uk/id/eprint/39036/
Published Date 2016

USIR is a digital collection of the research output of the University of Salford.
Where copyright permits, full text material held in the repository is made
freely available online and can be read, downloaded and copied for non-
commercial private study or research purposes. Please check the manuscript
for any further copyright restrictions.

For more information, including our policy and submission procedure, please
contact the Repository Team atsir@salford.ac.uk



mailto:usir@salford.ac.uk

INTERNAIONAL JOURNAL OF APPLIED AND COMPUTATIONAL MAT(EERAVTGER, GERMANY)
DOI: 10.1007/s40819-016-0180-9

ACCEPTED MAY 21°T 2016

FINITE ELEMESTMULATIONFNONLINEARONVECTIVE HEAT ARNRSS TRANSFER IN A
MICROPOLAR_UIGFILLECENCLOSUREITH RAYLEIGH NUMBER EFFECTS

R.Bhargava, S. Sharna’, P.Bhargavd, O. Anwar Bé§™ andA. Kadir
!Department of Mathematicéndian Institute of TechnologRoorkee India

2 Fluid MechanicsDepartment of Civil Engineerindndianinstitute ofTechnologyRoorkee, India

®Fluid Mechanics, Spray Research Group, School of Computing, Science and Bngjr@év,
Newton Building, University of Salford, Manchester, M54WT, UK.

ﬁbﬁzﬁﬁémaﬁcal model is presentédl study the doubidiffusive convective heat and mass
transfer of a micropolabiofluid in a rectangular enclosureas a model afrangport phenomena

in a bioreactor The vertical walls of the enclosure are maintained at constant but different
temperatures and concentrations. The conservation equations for linear momentum, angular
momentum, energy and species concentration are formusatejgct to appropriate boundary
conditions and solved using both finite element and finite difference numerical techniques.
Results are shown to be in excellent agreement between these methods. Several special cases of
the flow regime are discussed. Thetdbutions forstreamline, isotemperature, isoconcentration
and (isomicrorotation) are presented graphically for different Lewis number, buoyancy
parameter, micropolar vortex viscosity parameter, gyration viscosity parameter, Rayleigh
number, Prandtl nundr and micreinertia parameter. Micropolar material parameters are
shown to considerably influence the flow regime. The flow model has important applications in

hybrid aerobic bioreactor systems exploiting rheological suspensions e.g. fermentation.
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1. INTRODUCTION
Process mgineering embraces many diverse technologies including materials manufacture,

extrusion and increasingly synthesis of novel agémtbioreactors Bioreactorsare éso an
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important device in medical biotechnoloffy). Working systems employ a variety of circulating
biofluids which exhibit a diverse range of rheological and thermofluid characteristics. While mass
transfer is an intrisic component of bioreactor design [2], heat transfer is preferred in systems
which areaerobic[3]. The fluid mechanics [4] of such systems involvesildlediffusive natural
convectie heat and mass transfarenclosures, a subject of interest in otheciglines including
electronics, fuel cells, fire dynamics and solar cell technoloditesy Newtonianstudies of
enclosure (cavity)lows have been reported seminal study of doubldiffusive convection with
combined driving forces was presented byr@st [5]. Makham and Rosenberger [6] studied the
convective heat and mass transfer in crystal growth regimes in rectangular cavities. Betrgman
al. [7] reported on the mixing hydrodynamics and growth processes in ddifilisive
geophysical convection. dganathan and Viskanta [8] studied analytically and computationally
the binary free convection in a square cavity with combined thermal and species gradients.
Nishimuraet al [9] also investigated the solidification of binary systems in dodifesive heat

and mass transfer flowBejanet al [10] considered natural convection heat and mass transfer in

a rectangular cavity subjected to various boundary conditions. Using both analytical and
numerical techniques natural convection within a porous laygesed to heat and mass fluxes

in the horizontal direction was studied for a wide range of parameter values. A numerical study
waslaterconducted by LinJ1] to analyze the transient natural convection heat and mass transfer
in a square enclosure. Influges of the governing parameters on the unsteady variations of
Nusselt and Sherwood numbers were examined and discussed in detail. Compared to such
configurations, few investigations have considered the case where cross gradients of temperature
and concemation are imposed. For this kind of boundary condition, numerical simulations of
thermosolutal natural convection in a horizontal porous cavity were reported by Mohamad and
Bennacer 12]. In their study, the porous matrix is heated and cooled along thieavewvalls

while concentration gradients are imposed verticdllyey identifiedflow regimesfor the case

of thermal and solutal dominating flows. Later theytended this study13] to numerically
modeltwo- and threedimensional thermosolutal convist in a horizontal enclosure filled with

a saturated porous medium and subjected to cross gradients of temperature and concentration.
Khanafer and Chamkhd4] used the ADI scheme to investigate the mixed convection flow in a
Darcian liddriven enclosureKhanafer and Vafai [8] more recentlystudied the doubldiffusive
composite convection in a square enclosure containing a Parmheimmer porous medium
using finite volume and ADI methods.

All the above studies have been confinedNewtonianfluids. In numerous biomedical systems,

working fluids (plasma, blood, arltiacterial agents etc) exhibit ndlewtonian shear stresgrain



characteristics and also complex mich@ology. TheNavierStokesviscous flow model is
incapable of simulatinguchmicro-structural characteristicsand biofluidsthereforerequire a

more sophisticated model for their accurate analysighis connection Eringenlf] in 1966
proposed theheory of micropolar fluid, in which the local effects arising from microstructure
andintrinsic motions of the fluid elements were taken into accalfhile significant applications

of this robust model have been reported in the context of biomechanics, chemical engineering
heat transfer past bodiasdchannel flows, relatively few studiehave emerged considering the
convection of micropolar fluids in enclosuresncluding bioreactors Several important
investigationsconsidering onlyconvective heat transfenave been communicatedena and
Bhattacharyya 17] provided one of the first atyses ofmicropolar thermal convection in a
rectangular box heated from belowhey used theGalerkin method and obtained critical
Rayleigh numbers for various material parameters. Natural convection of micropolar fluids in a
square cavity with differerdlly heated end walls was investigatater by Chen and Hsulp]

and Hsu and Cherl9]. In the former study they indicated the strong influencenaropolar
parametepn the flow regime compared with a Newtonian fluid. In the latter they used a vorticity
model formulation for twedimensional convectioof the form, - = - ’ 2 < where : is the
dimensionless vorticity and< is the dimensionless stream functidrhey used a cubic spline
numerical scheme to show that the average Nusselt number is signifloamtyfor a micropolar

fluid than for Newtonian fluid. While heat transfer rat@sre shown to be depressed by an
increase in vortex viscosity parameter, heat flux infact was shown to be increased by
micropolarity of the fluid. Several other studies ofcropolar fluids in enclosed geometrical
systems have also been reported. Gial [20] used an alternating direction imglicolver to
examine the unsteady free convection of micropolar fluids in concentric spherical annuli.

These studies of micropalaonvection in enclosed geometries were all restricted to only
heat transfer. The opled problem of mass transfer is fundamental to bioreactor systems.
Important studies of relevance to this area @n@ivas and Murthy [21] who studied entropy
generatio in micropolar transport in porous media and Mur#étyal [22] who examined
mciropolar hydrodynamics in stratified porous systems.

In the current study we considdoublediffusive heat and mass transfer of micropolar
bio-suspensioin an enclosurgasa two-dimensional simulation of transport in a bioreactdhe
coupled differential conservationequations forlinear momentum, microrotation(angular
momentum), energynd concentrationare solved numerically usingoth thefinite element
methodand a fiite difference method. Both methods have been applied extensively by the

authors for over a decade in a wide variety of fluid dynamics probl€amstours are plotted for



different values of buoyancy parameter, Lewis numbgcyopolar material parameterachalso

Rayleigh and Prandtl numbegsdthe results are interpreted length.

2. MATHEMATICAL FORMULATION
We study a twalimensional enclosure (séigure 1) of height H' andwidth L'. It is assumed
that the hird dimension of the cavity is large enough so thattthasport processesan be

assumed to bawo-dimensioral in nature The vertical walls of the enclosure are subjected to
temperatureTh' and Tc'at the verticalleft and right walls, respectively while the adiabatic

boundary conditions are applied at upper and horizontal w#dlat conduction in the enclosure

walls is neglectedThe horizontal surfaces are subjected to a fixed concentratiorg high

concentréion at the bottom $,') and low concentratiofS ') at the upper bounday, with

adiabatic concentration at the left and right walls. It is assumed thabidfleid is an
incompressiblemicropolar (rheological suspesion) fluid and laminar flow is maintained The

constitutive equations for a micropolar fluid in vectorial form éméowing Eringen 23]:

Conservation of Mass

— T&) 0 y

oIS

Conservation of Translational Momentum

(G 2P K" "X -(P K’ u W+ F M -'P+ &= %-VM’NH%UVZ @)

Conservation of Angular MomentungMicro-rotation)

(D+B) ' 'xM -J U M+ F uV -2M+ U= gM (3)

where P is the hydrodynamicpressure andQ P F D, Eand Jare viscosity coefficients of
micropolarfluids, V = translational velocity vectoM is angular velocity ificrorotatior) vector
and Uhe mass density of micropolar fluid. In the micropolar model theory we are only nedcer
with two independent kinematical vector fields, namely tedocity vector fieldfamiliar from

Navier-Stokes theoryand theaxial vector fieldwhich simulateshe spin or the microrotations of



the micropolar fluid particles, these being assumeddeformable i.e. rigidThe thermophysical
properties of themicropolarfluid are assumed to be constant, except densitiation in the

buoyancy terrg which is assumed to follow dinear variation with local temperature and
concentration,jn accordancewith the Boussinesq approximatioThis can be mathematically

expressed as follows:
@r.s L1 L T (B SR @

where Sy 'and T, " are reference concentration and temperatusé a0, y' 0. In (4) Fand &
designate theoefficients ofthermal and speciexpansion, whiclare defined as follows:

E 1Y (5)
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The conservation equations for micropolar dowudifeusive convection in the enclosuocan be

shown to take the following forrin an X, Y coordinate system, as illustrated in figurefdr

vanishing pressure gradienthé@ flow is thermally and solutallydriven, not pressure

driven):
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whereall parameters are defined in the nometuck
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Figure 1: Physical model for micropolar doubtiffusive conveadn in bioreactor enclosure

The equations are now transformed with the followmegrdimensionalvariables,to facilitate a

numerical solution, under appropriate boundary conditions:

(X, y) (u',v) T ) (S 3)
X, , uv) ——, T —~%, S —= 12
(X y) o (u,v) T — T (12)
y 12 1
M LW G H™G (13)
D
The governing equations in natiimensional formemerge afollows:
e, Wi
w ) W y (14)
"2 Ra NW—S-§, (15)
X WX©

X wy ©
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whereRais theRayleigh numberl is the loyancy ratigLe is theLewis numberPr is Prandtl
number, As a micropolar material paramet®is microinertia density parameter atlis the
micropolar vortex viscosity parametefhe boundary conditions for flow are the -sip
condition at the impermeable wallSonstanttemperatures arenposed bng the vertical walls
with adiabatic conditiomat the horizontal wallsConstant species concentratioonditions are

employed atthe horizontal walls and zero mass fluxes at the vertical walls of the enclosure

Mathematicallywe can write the boundary conditionsfaows:

x 00 MO T 05 G LY WS ,
2 X WX
x 1 MO T 05 G LV WS
2 X WX 20
y 0, MO, - 0, & W 5 o5
y vy
y 1 M0 —— o 6 M s o5
y vy

The average value of Nusselt and Sherwood numl#dtigh characterize the dimensionless heat

transfer rate and mass transfer rate, respectivelgvaluatedatthe horizontal and vertical walls,

using the following expressions:
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3. NUMERICAL SOLUTIONS

The set of equations 41 to (18) are highly nonlinear thereferthis system of equatien
does not render alytical solutions The finite element method h#sereforebeen used to solve
the model additionally a finite difference method has bémplementedo benchmark the finite
element solutions. We shall discuspects of both numerical techniques now.
3.1Finite element method

The finite element method is widely used for solving boundary value problerfisid
mechanicg24]. The technique has been employed by the authors in a number of areas of biofluid
mechaics and bioheat and mass transfer, including pulsatile flagjs fanofluids g6, 27] and
biomagnetics 28]. The SLQILQLWH" | QOsRdvidedRiRtD Is@aller elements of finite
dimensionstermed finite eO HP H Q W ¥dmairy kheh constitutesnaassemiaglge of these
elements connected at a finite humber of PiRtD O OAM&GHN Y 7KH FRQFHSWs RI GLVFUH
used inthe finite difference method ishen performedOther features of the method include
seeking continuous polynomial approximations of thletton over each element in term of nodal
values, and assembly of element equations by imposing theeletaent continuity of the
solution and balance of the irtelement forcesThe major stages of themethodare summarized
below in flowchart 1
1. Division of the domain into linear elements, called the finite element mesh.
2. Generation of the element equations using variational formulations.
3. Assembly of the element equations as obtained in step (2).
4. Imposition of the boundary conditions to #uations obtained step(3).
5. Solution of the assembled algebraic equations.

The assembled equations can be solved by any of the numerical technique viz. Gaussian

elimination. The details of the steps given above can be foud]in |

3.1-1 Variational Formulation: -
The variational form associated with equationd) (tb (18) over a typical square element is

given by:



Xe1 Ye1

sw a1 axay 0 23)
X Ye W©
Xe1 Ye1
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3w, 32 MRa— NV gyay 0 (25)
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3w, 327 M1 Mgédxdyvﬁ 26)
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where W, W,,W,,W, ,W; and W, are arbitrary test function and may be viewed as the variation

in u,v, MI',S and G respectively. All functions satisfy the homogeneous boundary conditions,
as per theoretical requirements.

3.1-2 Finite Element Formulation: -
Theflow domain defined as) dx dl,and O dy dl is discretized into squareeshents of same

size. The finite element modisl nowobtained fronthe equations 23-28), by substituting finite
element approximations of the form.

zlt 4
u |ui'i’ v :vjlj,
i1 i1
Mo, T T 29
p it P it
i1 i1
4 4
S I s | G :Gl



10

with  w | 1 1,23456,) 1234 and where I4,1,,13and |, are the linear

[ J
interpolation functions for a rectangular elemehf andthese are defined as

, X1 X Ye1 Y
X % Yer Yo
, X Xé )@ 1 y
2 )
x;]_ Xe yél ye (3(»
I, X Y % ’
X1 X Yer Ye
, Xel X y )@
Yo% X% Yer Ve
These equatiors are then writterin matrix-vector form as:
akll @ klz @km @RM @15 @16 @aﬁ o aﬁl ‘o
( 21 @kzz @kzs @ku @ 25 @26 q\\/ » iﬁz ‘z
<k31@k32 @k33 @k34@ @36 « <ﬁ3 Yy
«Ru@ku @k43 @RM@ @ ; 2254 ‘i (31)
ku @ ksz @kss @k54 @55 @ @< z 335 \i
Re @ R 62 @kes @RM @65 @66 @&3 W, i‘ﬁe 3
where R™|and B™ @ mn 123456 are defined afllows:
Kit :‘;’,li I | dy, K2 :fli V:—;dMy, @)

12 14 15
KU K” Ku 0

Vw
KZ2 3l 1 jdxdy K?3 3lid—‘d>dy,
e e dy (33)

21 24 25
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dx

. e

y ) hxdy
44 3©dx dx dy dy
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.e § wl i C Wi i
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;¢ 3ul— vlj—L dxdy
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W W
K PrRB g3 Wil W dxdy
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— 11 dxdy
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KP® Pr 3
g owj - W
¢ 3wulj— vilj—— dxdy
c© dx dy :

62 63 64 65
K” K” K” KI] 0

2
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B> 0 K" o
b® op® O
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(34)

(35)

(36)

(37)

(38)
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4 4

and u : Iy, v : liv; . The whole domain is divided into 100 square elements of
i1 i1

length 0.1. Each elementfisur-nodedtherefore whole domain contains 121 nodes. At each node
6 functions are to be evaluatdtence after assembly of the element equatimsbtain a system

of 726 equations which is ndimear therefore an iterative scheme is used for solvinghe

system is linearized by incorporating the functid._msand \_/ which are assumed to be known.
The system of linear equations has been solved using i@agsiminationandan accuracy of
0.000! has been maintained in the computatidhbas been observed that in the same domain
the accuracy is ndffected even if the number of elements are incredsgdecreasing the size

of the elementg~urther mesh refinement serves only to escalatgdl ationtimes.

3.2Finite difference method

For thepurposes ottomparisonthe same system of equationgl)(%¥18), subject to boundary
conditions R0) is solved numerically using the finite difference methbtis method is used for
solving the ordinary @well as partial differential equations governing boundary value problem as
well as initial value problemBy using the central differencapproximations 9], the set of

differentialequations (14¥18), can baliscretized to give

L DM Dy (LD ME L) oy

ué.1) 2ke 2he

sM _Lj) 2v) WY ) - 8SGUM D 2iG N if M)

© he? 1 © ke 40)
Ra (L0 1,1)2th Lik NGO L) SE LIS
e 2he ©
g L) TG T L) TG D RiG)TiG D)
© hef 1 © ké > 1 (a1)
u(i, l’J)thG L) v U 1;;9“ D)
§( 1)) 25G.) S L)) - §Gj O 25G.j) S 1
© hée 1 © ké s 1 42)
Le ui Ut ‘)Zhes(' LIy i, ] 1;;’("’ 15?@
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%(i,j)(G(i L) SC L)) - \%j)(e(,j DGU 1

2he 2ke > 1
8M Lj) 2 M) (ML) . 8(GM 1 2iGH if, M)§. .8
PIRB 2 "o G 12G(I,J)© (43)
PrO--G(i Lj) &Gj) 6 e GGj 1) IBE,j) G, 188
he’ © kef @

where he and ke denote the x and y direction stEgngths Since the above equations are gon
linear and coupled hence they cannot be solved exactly. Therefore an iterative scheme is required

to be used. Writinga@wn the equations in the form

X F Il I (44)

where eachl; is the function of the variabley,v, MT,$ and x is any of the variable

u,v, MT,S. Now starting with iitial guess values, new iterate values are obtained. This

process continueantil the absolute erro*xi Xi 1| is less than the accuracy required. The

condition of convergence of the scheme has been already checked before implementing the
iterative schemek-urther excellent details on modern applications of the finite difference method
are available in Sohadt al [30] and Sohaikt al.[31] where adapting of algorithms to capillary
gravity wave and magnetic nanoscale flow problems have tmesidered. Therefore while the

finite difference approach is classical, it is still very versatile and has significant abilities for

solving nonlinear boundary value problems in transport phenomena.

4. RESULTS AND DISCUSSION

The controlling parametemwhich dictate the flow regiméor double diffusive natural
convection in an enclosure dtee aspect ratioA, and the dimensionless numbdra, Pr, N,

Le, QB and R We shall discuss the influence of each of these parameters in Begsadtl
numberPr is fixed at7.0 and Lewis numbeiLe at 10corresponding to enodel of salt diffusion

in water representative of briAleased bioreactors [2nd foran aspect ratio of 1.0 i.e. a square
enclosureunless otherwise statgdle = 1 in oxygen).

Stable solutal stratified fluid resists flow evolution. On the other hand applying horizontal
temperature gradient across the cavity initiates flow, even foryasweall temperature gradient.
Hence there is a competition between thermal and solutal buoyancy fascdd. approaches
zero, the thermal buoyancy drives the flow and formation of a longitudinal recirculated flow is



14

expected for modately high Ra parameter. ASN becomes much larger than unity, the flow is
suppressed in the enclosure and diffusion dominates the heat and mass trandferofFarder
unity, the effect ofthermal and solutal buoyancy forces becomes of shme order and

magnitude.

Figures 19 illustrate the influence of various parameters on the regime. Figures 1 to 4
demonstrate typical features of aiding double diffusive flowbieoyancy ratioN . Figures 1a,
1b, 1c and 1d show the representative sequence of streamline isotherm pattamgcesration
and iso-microrotationpattern in a square domain fo# 0 i.e. where buoyancy ratio is zero.
SettingN = 0 effedively de-couples the vorticity equation (15) from the species conservation

equation (17).

Ra 100 O 50 Pr 10,R 1B 51Lle .1

N T'(0) FEM T'(0) FDM S(0) (FEM) S(0) (FDM)
-0.50 1.0917 1.0923 595659 59247

0.0 1.19425 1.19342 54887 54863
0.50 1.32167 1.32540 50195 50174

1.0 1.46554 1.46638 464043 46684

5.0 2.02833 2.02549 664634 66045

10.0 2.33136 2.33074 1.02901 1.02468

Ra 100 O 50 Pr 100R 1B 5N .1

Le T'(0) (FEM) T'(0) FDM S(0) (FEM) S(0) (FDM)
.001 1.19437 1.19426 .99364 99553

1 1.20667 1.2058 936199 936886

1.0 1.32167 1.32085 50195 501228
5.0 1.29295 1.29478 941962 941324
10.0 1.23751 1.23687 1.18054 1.18165
20.0 1.19164 1.19320 1.192009 1.193117

Table 1. Table for the rate of heat transfer{ T' 0} and rate of mass transfer{ S 0} with
different value of buoyancy parameter N and Lewis number Le
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Figure 6b: Iso-tempeature profiles(Ra 100,Le 1,B 1.,0 1.,R 1.N
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Figure 7c: Iso-concentration Profiles(Ra 200,Le 1,B 1.,0 1.R 1.,N .O:
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Figure 8a: Sreamline profiles (

Figure 8b: Iso-temperature profiles (
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Figure 8c: Isc-concentration profiles (

Figure 8d: Iso-micro-rotation profiles (
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Figure 9a: Isomicrorotation for

Figure 9b: Isomicrorotation for
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Figure 9c: Iso-microrotation for Pr =7 (

Figure 9d: Isomicrorotation for Pr = 10 (
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Figure 9e: Iso-microrotation for Pr = 100 (

Figure 9f: : Iso-microrotation for Pr = 1000 (
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The variation of the rate of heat transfar'(0) ) and mass transfei§(0)) with repect to
buoyancy parameteNj and Lewis numberLg) are provided in table 1. Results from both the
finite element computations and the finite difference computations are shown to be in excellent
agreement. It can be seen that the rate of heat transfeases with increase in, while rate of
mass transfer first decreases for , but increases for . The rate of heat transfer increases
and mass transfer both decreases for , while opposite effects are observed for . In all
the data computedRa = 100, O= 0.5, Pr = 1.0, R = 1(micropolar vortex viscosity and

Newtonian dynamic viscosity are equaf)dB = 0.5.

In the presenstudy the flowin the enclosurecomprises asingle roll, the tendency of
which is to rearrange theiofluid into a position of stable stratification, one in which the warm
fluid that initially occupied the left half eventually moves to the upper half of the domain.
Concentratiorgradient reversal is evident at the core of cavity due to strong flow recircukaion
shown infigure Ic. The isotherms reveal that the rate of heat transfer is high at the bottom of the
hot wall due to flow impingement at this location, and rate of tiaasfer decreases along the hot
wall. Iso-concentration plots indicate a concentration bias towards the upper horizontal boundary
while the micrerotation profiles (figure 1d) show a clemortex structurein the centre of the
enclosure.

Figures 2a to 2l illustrate the results obtained by increasiNg from zero to unity for
which the solutal and thermal buoyancy are equal. Lewis number is unity and therefore the
thermal and species diffusivities are also equal. For this valubl ahere is a competition
between thermal and solutal buoyancy for&&gh the increase ibbuoyancy raticthe flow near
the hot right walls driven vertically upward, and whereas the low concentration at the upper wall
causes théioreactorfluid near it to sink. Clearly both the thermal and solutal buoyancy effects
augment each other and thus they simultaneously accelerate the flow counterclogkwide.
increases, the flow is driven solely by the solutal buoydaoyes.We note that for N = 1, the
iso-temperature curves become more intensely packed towards the left wall of the enclosure
(figure 2b) compared with the case fér= 0 (figure 1b). The is@oncentration profiles are also
substantially affected. Theyra intensified in the region of the upper horizontal wall and the
vorticity near the central region of the enclosure is also increased (figure 2c) compared with the
case for N = 0O (figure 1c). The mierotation profiles are alsaffected.Magnitudes in pdicular
in the central zone of the enclosure are enhanced for N = 1 (figure 2d) compared with the case for
N = 0 (figure 1d).
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The influence of yet larger values of buoyancy ratio (N = 4) are depicfeglies 3a to
3d. It is clear from all the figuredat for N = 4, the strength of the flow circulation is decreased
(compared with lower N values in figures 1a to 1d and 2a to 2d); conversely concentration and
thermal reversal diminishes. Heat transfer takes place mainly by conduction as is evideng from th
isotherm distribution. Micreotation profiles are also seen to become more intensified with N =
4.

The typical feature obpposing double diffusiofiow ( ) is shownin figures 4a to
4d, for which the flow is driven mainly by desiilizing solutal buoyancy forcetn this sceanrip
the temperature and concentration are linearly stratified in the horizontal and vertical direction.
The most striking features of the effect mégativeN is the suppression of convection as a
transportmechanism. The suppression is most dramatic in the vicinity of , i.e. in flows
where the temperature and concentration buoyancy effects are of the same order of magnitude
and in opposing direction. Indeed, the flow disappears ahliegeh the limiting case ,

. The circulation is reversed asbecause as low as as shown in fig.4: here the
flow is mainly counterclockwise, and the boundary layeag $tom the upper left hand and lower
right hand corneraMlicro-rotation is seen to weaken considerably in the central enclosure region
(figure 4d).

Figures 5a to 5dillustrate the effect of Lewis numbégte) on the concentration field
which is coupled tdhe heat transfer driven flovi,ewis number defines the ratio of thermal and
mass diffusivities. It entails therefore the relative thickness of the thermal boundary layer thickness
to the concentration boundary layer thickness. It also defines the r&raratl number to Schmidt
number, where the latter is a relative measure of the effectiveness of momentum and mass transport
by diffusion in the velocity and concentration boundary laygtsmall Lewis numbers ( )
the concenation boundary layers are no longer distinct and mass transfer through the porous layer
is mainly bydiffusion in the horizontal direction. The opposite effect is encountered at high Lewis
numbers ( ), where the concentration balary layers become sharper than the thermal
boundary layers. In addition, at high Lewis numbers the mass diffusivity is low enough relative to
the thermal diffusivity so that the horizontal intrusion layers lining the top and bottom walls are
considerablysharper than their thermal counterparf®e net result is that the core of the
concentration field at high Lewis numbers is in a state of almost uniform concentration.

The influence of Rayleigh number on the flow regime is illustrated in three setiots, p
figures 6a to 6d (Ra = 100), figures 7a to 7d (Ra = 200) and figures 8a to 8d (Ra = 300). The other
parameters in all three sets of distributions have values of Le =1, B>=11,R =1 and N = 0.01.

The Rayleigh number signifigbe relative impotance of the buoyancy force to viscous force in
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mixed convection flowAs Ra increases from 100, to 200 and 300, streamline profiles (figures 6a,
7a and 8a) become increasingly concentrated towards the left wall of the enclostempsature
profilesare seen to intensify also in the vicinity of the left walRagleigh numberises from 100,
200 to 300 as shown in figures 6b, 7b and 8b. Concentration profiles become increasingly intense
towards the upper horizontal boundary Ra increases (figuresd 7c and 8c). Finally micro
rotation profiles are shown in figures 6d, 7d and 8&ascreases from 100 to 200 and then 300.
A rise in Ra to 200 increases the concentration of mrigtation in the top right zone of the
enclosurewhile simultaneously itensifying the micreotation (angular velocities) in the central
region. This trend however decreasesRads increased further to 200 indicating a critical zone
between 200 and 300 where migmdation intensity is maximized.

The influence of Prandtl maber on the micraotation profiles is illustrated in figures 9a to
of. Arise in Pr from 0733 (corresponding tair or wate) through 10 (water) 7 (brineivatel), 10
(weakly bierheologicalsuspensions), 108nd 1000 higher viscosity biofluidg corresponds to a
decreasen thermal conductivity of théiofluid (i.e. an increase in Prandtl number for constant
values of dynamic viscosity and specific heat capaPity; ¢, PK.). Prandtl number quantifies the
relative effectiveness of momentum and egdrgnsport by diffusion in the velocity and thermal
boundary layersPrandtl therefore strongly influences the relative growth of the velocity and
thermal boundary layersSmall values of the Prandtl number, << 1 means the thermal
diffusivity dominates. Converselywith large valuesPr >> 1 the momentum diffusivity
dominates the behavior. Prandtl number is inversely proportional to thermal conductivity of
the biofluid. Therefore as Pr increases, thermal conductivity of the fluid must decrease and
this reduces the contribution of thermal conduction heat tran$ferthermorewith
increasing Prandtl number, the viscous boundary layer becomes increasingly larger than the
thermal boundary layePrandtl number therefore is a significant parameter inflmgnci
thermofluid characteristics in the regime.

The other parameters in alk profileshave values oRa=100Le=1,B=1, &1, R=1
and N = 1 As Pr increases fron0.733 to 1.0 (figures 9a and 9te observea decrease in
concentration of ignicro-rotations in the upper right corner vicinity of the enclosure; there is
nevertheless an increase in concentration of profiles in the central region. As Pr rises to 7 (figure
9c), profiles become less concentrated but then increase agdn é6rl0 (figure 9d). For very
high values of Pr, corresponding to lower thermal conductivities, prdidesmeprogressively
more sparseeven though magnitudes remain essentially the same. In the right half of the enclosure

iso-micro-rotations are almost parallelthilarger separations for tf = 1000 case.
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5. CONCLUSIONS

A two-technique numerical solution has been obtained for the micropolar etitfolve heat
and mass transfer in an encloswee a model of bioreactor systeriifie results have indicated
that:

1. For sufficiently small , the flow is mainly governed by the thermal buoyancy, while for
its large value, the flow characteristics are similar to those of pure solutal convection. The
flow is solutally driven when is small and thermally driven when is sufficiently

high. For intermediate value of , both solutions are possible.

2. The rate of heat transfer increases with increase,iwhile mass tnsfer first decreases,

then increases as increases.
3. The atesof heat and mass transfer amnversely affectedith arisein Lewis number.

4. Rising Prandtl number generally decreases migtation concentrations in the

enclosure.

5. An increase in Rayleigh number alsmreases streamlines circulation profiles towards
the left wall of the enclosure, intensifies-®onperature profiles in the vicinity of the left
wall, enhances isoncentration (species) profiles towards the uppeizbntal boundary

and boosts concentration of is@cro-rotations in the top right zone of the enclosure.

The present study has demonstrated the excellent versatility of finite element methods in
simulating transport in bioreactor enclosures. Futureiesudvill also incorporatechemical

reaction effects Reactive flows may be either homogenous or heterogenous, destructive or
productive. They may also be first, second or higher order. These aspects may be of relevance to
better understanding bioreactoryglfto-chemical micropolar flows since chemical reaction may
significantly influence both heat and species diffusion rates. Indeed we have employed many of
these approaches for simulating chemical reactions in recent years, and the approaches developed
in [32]-[38] will be explored in enclosure micropolar convection flows in the near future. The
formulations adopted willrange from linear to quadratic and also exponential. They can be

elegantly integrated into the transport equations.
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NOMENCLATURE

Roman

A enclosure aspect ratio

B micro-inertia density parameter
D species (molecular) diffusivity
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gravitational acceleration

dimensional micreotation component (angular velocity)
non-dimensional micreotation dmmponent (angular velocity)
x-direction steplength in finite difference algorithm
height of enclosure

Eringen micropolar parameter

stiffness matrix in finite element domain

y-direction steplength in finite difference algorithm
Lewis number

width of enclosure

angular velocity (microrotation) vector

buoyancy ratio

Nusselt number

hydrodynamic pressure

Prandtl number

Eringen nordimensional micropolar vortex viscosity parameter

Rayleigh number

Sherwood number

concentration difference

concentration at lower boundary of enclosure

concentration at upper boundary of ersiioe

reference concentrationat 0,y" O.

dimensional concentration
non-dimensional concentration
temperature at vertical left wall of enclosure

temperature avertical right wall of enclosure
reference temperature at 0,y O.

temperature difference

dimensional temperature

nondimensional temperature

G LPHQ YV tdrRe@tDrovel deity

non G L P HQ V LdRegtOvdl§city

G L PHQV tdRe@tDroveldeity

non G L P HQ V LdReQtDrOveldcity

translational velocity vector

arbitrary test function in finite element model
coordinate parallel to base of enclosure (horizontal)
coordinate transvese to base of enclosure (vertical)

viscosity coefficient of micropolar fluid
thermal diffusivity of micropolar fluid

viscosity coefficient of micropolar fluid
viscosity coefficient of micropolar fluid
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viscosity coefficient of micropoldiuid (micropolar material parameter)
viscosity coefficient of micropolar fluid (dynamic viscosity)

viscosity coefficient of micropolar fluid

mass density of micropolar fluid

coefficient of species expansion

coefficient of thermal expansio

linear interpolation function in finite element model

rectangular element in finite element discretized domain
kinematic viscosity

dimensional stream function

nontdimensional stream function



