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Abstract:

A numericalstudy is conducted ¢dminar viscoelasticnandluid polymericboundary layerstretching

sheet flow. \scous dissipation, surface transpiration (suction/injection),internal heat
generation/absorptiorand work done due to deformatioare incorporatedusing a second grade
viscoelastic nonNewtonian nanofluid with nortisothermal associated boundary conditiansThe
nonlinearboundary value problem solved using a higher order fia element methodhe influence of
viscoelasticity parameter, Brownian motion parameter, thermophoresis parameter, Eckert number, Lewis
number, Prandtl number, internal heat generation and also wall suction on thermofluid characteristics is
evaluated irdetail. Validation with earlier nomlissipative studies is also includéthe hpfinite element
method achieves the desired accuracy=s8 with comparatively less CPU cost per iteration (with less
degrees of freedom, DOF) as compared to lower order felgement methodd he simulations have
shown that greatepolymer fluid viscoelasticity {k accelerates the flow. A rise in Brownian
motion parameter (Nb) and thermophoresis parameter (Nt) eketertgperatures and reduce the
heat transfer rates (local d$selt number function). Increasing Eckert number increases
temperatures whereas increasing Prandtl number (Pr) strongly lowers temperatures. Increasing
internal heat generation (Q > 0) elevates temperatures and reduces the heat transfer rate (local
Nussdl number function) whereas heat absorption (Q < 0) generates the converse effect.
Increasing suction {f >0) reduces velocities and temperatures but elevates enhances mass
transfer rates (local Sherwood number function), whereas increasing injegtiof)(bccelerate

the flow,increasegemperatures and depresses wall mass transfer ratesstudy finds applications in
rheologicalnanabio-polymer manufacturing
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1. Introduction

In recen years, an important trend in biopolymer manufacture has been the facility of patterning
functional materials at different length scales [1]. T¢hsracteristic allows the precision fabrication of
functional biopolymers for many diverse applications udahg cell biology, tissue engineering, bio

optics (contact lenses, ophthalmic agents etc) and suspension fluids for medical transplants e.g. biological
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hydrogels [2]. Many of these new biopolymers exhibit beneficial rheological properties enabling
enhancd performance in delivery of alginates in for example the accelerated treatment of vascular
hemorrhages, arteriovenous malformations via injection in medical {tétheters for endovascular
embolization [3]. The necessity to enhance mass transfer (oxiygemngrobial biopolymerg4] has also
attracted the science of nanotechnology to the optimizatiosud materials. As a resuianobio-
polymeric fluid dynamichias emerged as an exciting new research area in medical engineering. This
domain combines & properties of functional biopolymers and nanofluids to achieve better and more
adaptive agents for treatments via enhanced heat and mass transfer fidano#sids [5, 6 describe a
solid-liquid mixture which consists ofa fluid suspension containingltra-fine particles termed
nanoparticles The nanoparticles I140s;, CuO, TiQ, ZnO and SiQ areincreasingly being employed in
biomedical systemgypical thermal conductivity enhancemefds bio-nanofluids [7]are in the range of
15-40% over the base fldland heat transfer coefficients enhancements have been found up to 40%. Pak
and Cho [8] conducted comparative experimental investigations on turbulent friction and heat transfer of
nanofluids with alumina and titanium oxide nanoparticles in a circufze. pihey tested alumina and
titanium oxide nanoparticles with mean diameters of 13 and 27nm respectively, in water. They found that
inclusion of a 10% volume fraction of alumina in water increased the viscosity of the fluid 200 times and
inclusion of the ame volume fraction of titanium oxide produced a viscosity that was 3 times greater than
water. They also noticed the heat transfer coefficient increased by 45% at 1.34% volume fraction of
alumina to 75% at 2.78% volume fraction of alumina and is condiisthigher than titanium oxide
nanofluid. Increases in thermal conductivity of this magnitude in nanofluids cannot be solely attributed to
the higher thermal conductivity of the added nanopatrticles and therefore other mechanisms and factors
must contributeThese includgarticle agglomeratio9, 10, 11],volume fractio9], Brownian motion

[12, 13],thermophoresisnanoparticle sizg13], particle shape/surface aregf, 14], liquid layeringon

the nanopartickdiquid interface [15],temperature[13, 16] and reduction of thermal boundary layer
thickness The literature on the thermal conductivity and viscosity of nanofluids has been reviewed by
Eastmaret al.[17], Wang and Mujumdar [18] and Trisaksri and Wongwises [19]. In addition, a succinct
review on @plications and challenges of nanofluids has also been provided betakef20] and Saidur

et al.[21].

Buongiorno [16 identified multiple mechanisms the convective transport in narloids using a
two-phase norhomogenous model including inertia, Brownian diffusion, thermophoresis,
diffusiophoresis, the Magnus effect, fluid drainaged gravity. Of all of these mechanisms, only
Brownian diffusion and thermophoresis were found to be impontatfie absence of turbulence effects.

He also suggested thtne boundary layer has different properties owing to the effect of temperature and
thermophoresis. Taking Brownian motion and thermophoresis into account, he developed a correlation
for the Nusselt number which was compared to ftata Pak and Cho [8]rad which correlated best with

the latter [8] experimental data. Recently, the Buongiorno [16] model has been used by Kuznetsov and

Nield [22] to study the natural convection flow of nanofluid over a vertical plate and their similarity



analysis identified dur parameters governing the transport process. Ramh [23] investigated the
mixed convection problem along an inclined plate in the porous medium. In the alternative approach, the
heat transfer analysis with nomiform heating along a vertical plates been studied by Rana and
Bhargava [24]Prasacet al.[25] studied micropolar nanofluid convection from a cylinder using a finite
difference scheme. Khan and Pop [26] used the Kuzné&tssd model to study the boundary layer flow
of a nanofluid pasa stretching sheet with a constant surface temperature. Subsequently several authors
have solved the problem of nanofluid flow from a stretching sheet with different stretching and boundary
conditions and representative articles in this regard include &ahBhargava [27], Uddiet al.[28, 29],
Nedeem and Lee [30], Kandasasgtyal.[31], Bachok et al. [32] and Raeaal[33].

As mentioned earliemon-Newtonian(rheological) behaviour of nanofluids has been highlighted
in nanepolymeric manufacturing pcessedy many researchers including Chetnal. [34], Chenet al.
[35] and Gallegeet al.[36]. Recently, Khan and Gorla [37] investigated heat and mass transfer-in non
Newtonian nanofluid over a neésothermal stretching wallNumerous applications ofiscoelastic
nanocompositéabrication techniquel8, 4] have led taenewed interest among researchers to investigate
viscoelastichoundary layer flow over a stretching she&lthough numerous tadies of viscoelastic
stretching flows have been communazhby, for example Rajagopakt al.[38, 39], Dandapat and Gupta
[40] and Rao [4], these do not studyanotechnological material3 o improve our understanding of the
manufacture of bimanopolymers via e.gsheet extrusiorfrom a dye,it is important ¢ study eat
transfer (especially coolingtes) which stronglyinfluences the constitution andjuality of manufactured
products in biomaterials processingiscoelastic fluid flow generatesheat by means ofviscous
dissipationandwork done due to deforman. There is another important aspect, which should also be
taken into the account in a situation when there would bemgeraturedependent heat source/sink
present in the boundary layer regioh.wide variety of problems with heat and fluid flow over a
stretching sheet have been studied with viscoelastic fluids and with different thermal boundary conditions
(prescribed surface temperatuRST andprescribed heat fluxPHF) and powelaw variation of the
stretching velocity. A representative sample eftent literature oncomputational simulations of
viscoelastidlows based on ReingRivlin differential modelss provided in [4246].

7R WKH DXW KR vanffelw @uRig€Onave dids far been communicated with regard to
boundary layer flow and heattisfer of aviscoelastigpolymericnanofluid (Ethylene glycol and polymer
based nanofluidg)xtruding froma stretchingsheet with energy dissipationhis problem is very relevant
to modernnanepolymeric fluid manufacture processashe biotechnologyndustries wherein materials
can be synthesized for specific medical applications including sterile coatingpaaterial buffers etc
[1-4]. However some recent efforts to simulate viscoelastic flows have been communicated with
alternative viscoelastic onstitutive equations to the second grade differential model. For example
Krishnamurthyet al. [47] employed the Williamson viscoelastic model to study reactive phase change
heat transfer in nanofluid dynamics of porous media. Husstial. [48] employedthe Jefferys

viscoelastic model for magnetized Sakiadis nanofluid flow with exponential stretching and thermal



radiative effects. Khaet al.[49] deployed an Oldroy® viscoelastic model to study rheological effects
on heat and mass transfer wtlignensimal nanofluid boundary layer flow. Akbat al.[50] applied the
elegant EyringPowell rheological model for magnetohydrodynamic stretching sheet flow. Mehetood
al. [51] also used the Jefferys model for oblique stagnation flow and heat transfetatid§2) used the
Eringen microplar model to study nanofluid stagnation point flow with free convection and radiative
effects. All these studies demonstrated the significant influence of viscoelasticity in modifying velocity
and also heat and mass transfistributions.

In the present papewe focus on refining the simulations for biweological polymer materials

by incorporatinga proper sign for the normal stress modulus (LEt,0) as described in Section 2

numerical solution is developed for the rinehr boundary value problem derived in the present article.
Babuska and Gufb3] presented the basic theory and applicationk, gfandh-p versions of the finite
element methods. Khomaiei al.[54] has presented a comparative study of higher and lowger finite
element techniques for computation of viscoelastic flows. It has been demonstrated thafiniie hp
element method gives rise to arponentialconvergence rate toward the exact solution, while all the
lower order schemes considered exhibilinear convergence rateThus, weemploy an extensively
validated, highly efficienthp-Galerkin finite elementmethodto obtain numerical solutions for the
presenproblem.

This paper runs as follows. In Section 2, we consider the mathematical suodtymviscoelastic
polymeric nanofluid flow and heat transfer with energy dissipation effects (viscous heating and work
done due to deformationjited above are included in the energy equation with prescribed surface
temperatee (PST case) boundary hiegt A summary of the hgfinite element numerical technique is
presented in Section 3. Section 4 presents graphical solutions and a discussion of the influence-of the non
dimensional parameters including Brownian motion parameter, thermophoresis paraisetedastic
parameter, Prandtl number, Eckert number, the sudacgon/injection parameter, and internal heat

source/sink parameteon the flow characteristics. Finally the conclusions follow in Section 5.

2.  Constitutive Relations andBio-Nano-Polymer Mathematical Model
Let us recalthe constitutive equation for ancompressible fluid of grade (based on the postulate of

gradually fadingmemaory) given byColeman and Nollg5]:

M Pl 1S 1)

j1
Forn 3, the first three tensor§ are given by:
S A,

S A, D 2A21' (2)

S, EA; BAAFAN)  EATA



wherex*is the stress tensorpi designates the indeterminate part of the stréss the viscosityp, Dare
the normal stress moduli, ane, £ .are the higher order viscosities. The Risiricksen tensors\ are

defined by the recursion relation:
A gradV gradVT.

A %A}—l A.. gradV  gradV'. A, n 23,.. (3)

wherev denoteghe velocity field grad is the gradient operator adédtis the material time derivative.

Thus, for the particular of a secegdade fluid, we have:
*o-p A A K (4)
where* is the Cauchy stress tens@iis the pressuref is theviscosity, £) and ) are two normal stress

moduli with < 0, andA andA, arethe first two Rivlin£Ericken tensors defined by

A (gradV) (grad\).
A D A(grady) (gradVy. A

(5)
The model 4) displaysnormal stress differences in shear flow and is an approximation to simple fluid in
the sense ofetardation. This model is applicable to some dilute polymer solutions and is valid at low
ratesof shearDunn and Fosdicfs6] have shown that, fahe fluid modéled by Eq. 4), to be compatible
with thermodynamics and to satisfy the Clausiishem inegality for all motions and the assumption
that the specific Helmholtz free energy of the fluid takes its minimum values in equilibrium, the material
moduli must satisfy

Pt0, pto, D ,PO. 6)
Howeverfor many of the noiNewtanian fluids of rheological interest, the experimental results f@r

and O do not satisfy the restriction®)( By using data reduction from expeents, Fosdick and
Rajagopal[57] have shown that in the case obecondorder fluid the material modulif, D and 2
should satisfy the following relatisn

pPto, pdo, ,D ,nO. @)

They also found that the fluids modeled by EE).with the relationship?) exhibit some anmalous
behaviors. A critical review on this controversial issue can be fourtteimvork of Dunn and Rajagopal
[58]. Generally, in the literature the flumbeyingEq. @) with p 0 is termed as secondorder fluid
and with 0 !0 is termed aseconegrade fluid. When 0, B 0Oand pP!0,Eq. @) reduces to the
well-known constitutive relatiofior an incompressibl&ewtonianfluid. Eq. (4) is used in the present
simulation. We onsider steady, incompressible, laminar, -tlimensional boundary layer flow of a

viscoelastic polymec nanofluid past a flat sheet coinciding with the plape owith the flow being

confined toy 10. The flow is generated, due twnlinear stretching of the sheet, caused by the



simultaneous application of two equal and opposite forces alongakis.xKeepinghe origin fixed, the

sheet is then stretched with a velocity Ex whereE is a constantand x is the coordinate measured
along the stretching surface, varying linearly with the distance from the slit. A schematic representation of
the physical model and oadinates system is depictedrig. 1. The pressure gradient and external forces

are neglected. The stretching surface is maintained at constant temperature and concgpatiad,
respectively, and these values are assumed to be greater than th& entperature and concentration,

T, andC, , respectively.The governing equations fazonservation of mass, momentum, thermal energy
and nanoparticlepecies diffusionfor a second order ReindRivlin viscoelastilmanofluid can be written

in Cartesian coordiatesx,yas

U WV (C)
X wy
W %W wiulBw u *w wX?®
pu M B g p piBw U ©)
W Cwo A Ox W Yew y dw ewd
2 2.::1 2
W W Wy CWT oy 8T W O Su
woWw yw y wy w ©Y&W ¢ © 10
R w_w, _uw, uswoT T)
(0w w xw yw U9 "1
L W Qv T
UW )Fw DB—yQW(DT/Tf)—)P (11)
where
. km ;D (M)P
( C)f (Uc)f (12)
subject to the boundary conditions
& 5
Xy U EXT T(® T A- ,C G(x £ B< at y0 (13a)
@ -1 l©: 1
u X0 du/dy OO T T,C C as yf (13b)

Hereu andv are the velocity components along the axesnd y, respectively,Dis the malulus of the
viscoelastic fluid, ¢/ is the density of the base fluid() is the thermal diffusivity, x is the kinematic
viscosity, e is a positive constantD; is the Brownian diffusion coefficientD; is the thermophoretic

diffusion coefficient and W ( c}{/( o) { is the réio between the effective heat capacity of the

nanoparticle material and heat capacity of the fldid,is the volumetric volume expansion coefficient

and ( is the density of the particle€qns (9)-(13) are a new formulation and extend the

Newtonianmodd of Rana and Bhargava [27] to a second order model, by incorporating new



terms from the ReineRivlin model and also Eckert heatingeat generation/absorpti@nd
work deformation termsProceeding with theanalysis, we introduce the following dimensiess

variables

K (bl ¥?y, u bxf¢)K (b))

& 5"
T T AT C B (1)K 14
3.k c ¢ B D) (14)
where the stream function is defined in the usually way as w / yand W / x. In seekinga

similarity solutionbased on the transformations in e(fif), we have taken into account that the pressure

in the outer (inviscid) flow is p  p, (constant)The governing eqs8)-(11) then reduce to

fccéf fct k[2ff (f PcdtV] @ (19
Pirccf THb T/NE )7 2¢ @ cHe(f)” kf¢df ffgco (16)
;

Nt
/ccle f/ 2f/ N 7 0 (17)

The transformed boundary conditions are

K 0, f f,,fcl 71, /1 (18a)
Ko f, fco, 70 /O (18b)
where( ) ¢ denotes differentiation with respect t& and the keydimensionlessthermaphysical

parameters are defined by:

Q LE Q /2 q
Pr — , Le D—B,kl B SIE Y2, Q ﬁTw

D vo (19)
Ec Esz,Nb ( 9,Ds(Cy, C), Nt U9 ,D(T, fT)’
Ac, (@, 0 (o T0

Here Pr,k, ,Le, Nb, Nt, Ec fand Q denote the Prandtl numheviscoelastic parameter, Lewis number,

Brownian motion parameterthermophoresis parameteEckert number, surface suction/injection
parameter and internal heat source/siakaneter,respectively. It is important to note that this boundary
value problem reduces to the problem of flow and heat and mass transfer due to a stretching surface in a

viscoelasticfluid when Nb, Ntare zero in equationd6) and (I).The presence of viscoelasterms in

the momentum equation (15) raises the order of this equation to one above that of theStdkeier



equations. Welposedness of the problem can be achieved via a number of strafeggige a general
review of the past work on the existerafesolutions ofthe primitiveEgns. (8) and (9), Trogt al [59]

and Mcleod andRajagopal $0] obtained auniquesolution.In fact, thesecond condition in Eqn. (1Bks

the property of the boundary layer in the asymptotic regidrang[61] hasclaimed hat the solution of
the problem igot necessarilyiniguewithout this conditionin the absencef the viscoelastic paraater
(i.,e.k, 0), Egn (9) reduces toa third-order ordinary differential equation for which these four
conditions are also applicabl@here is further an analytical solution in the absence of slip and
viscoelasticity, which reads

1 em™
m

f(A

f,withm

N

f, 4 A4Af2
(20)

Among all these, solutions of the form proposed by Tebwl. [59] are the realistic ones as we can
recover theboundary layer approximation of NaviStokes solution only ithelimiting caseof k, 0.t

is worth mentioning thatgm. (9) with the boundary conditions egs. (1Bahas an exact solution as given
by:

1 emK

A — fw (21)

wherem is a real positive root of theubicalgebraic equation

kfn (kK Hnf fma1 0. (22)
The velocity profile is determined from eqn.(21) to be :

feRH e™ (23)

The skin friction coefficientC, can further be determined from:

W Wy W
c W Wyw Yy Wo
f 2
Wz /2
w (24)

Noting that the skin friction parameter i¢ ¢0) r , Egn.(24) can be further simplified to

b
x\f—)(cf 2ml 3k) 5)

For thelinearly stretching boundaryayer problem the exact solution forf isf(A& 1 e “and this

exact solution is uniqgudmportant heat and mass transfigiantities of practical interefbr the present
flow probem are thelocal Nusselt number and thkecal Sherwood number which are defined
respectivelyas

Xq, h XQh, 26)

N —+* S
ok, T) 0,(G, ¢)



whereg, and g, are heat flux and mass flux at the surface (plate), respectiMetydimensionless heat

and mass transfer rates can alsolmevs to take the forrgivenin following expressions:
J=Nu @ [Ssh Tqo) 27
axt ax

The set ofordinarydifferential equationslefined by eqng15)-(17) are highly nodinear andcannot be
solved analytically. Thép-finite element method53] has thereforebeen implemeted to solve this
highly coupled twepoint boundary value problem to determine the velocity, temperature and nano

particle concentration distributions.

3. Numerical Solution:

3.1 The finite element method

Finite element method (FEM) was basically depeld in reference taircraft structural mechanics
problemsand has evolved over a number of decades to become the dominant computational analysis tool
for solving the linear and nedimear ordinarydifferential, partial differentialandintegral equationsThe

finite element methogrovides superior versatility to other numerical methods include finite differences

and is generally very stable with excellent convergence characteristics.

3.1.1. Finite element discretization
The whole domain is divided tim a finite number of sudomainsdesignated athe discretization of
the domain. Each sutbomain is called an element. The collection of elemeotsprises thdinite-

element mesh.

3.1.2.Generation of the element equations
3.1.2.1 From the mesh, a tigal element is isolated and the variational formulation of the given problem
over the typical element is constructed.

3.1.2.2 An approximate solution of the variational problem is assumed and the element equations are
generatedby substituting this sation in the above system.

3.1.2.3 The element matrix, which is called stiffness matrix, is constructed by using the element

interpolation functions.

3.1.3 Assembly of element equations
The algebraic equations so obtained are assembled by imposiimgetbedlement continuity conditions.
This yields a large number of algebraic equations known as the global finite element model, which

governs the whole domain.
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3.1.4. Imposition of boundary conditions

The essential and natural boundary conditions areseghon the assembled equations.

3.1.5Solution of assembled equations
The assembled equations so obtained can be solved by any of numerical teictuhimlireg theGauss
elimination method, LU Decomposition methodRXVHKROGHU TV W H F KhQasifiodldtc & KROHV !

3.2. hpFinite ElementMethod

hp-FEM is a general version of the finite element method (FEM), based on piegmijigemial
approximations that employ elements of varialite $) and polynomial degre). The origins ofhp-
FEM date backo the pioneerig work of Babuskaet al. [53] who discovered that the finite element
method convergesexponentiallyfasier when the mesh is refined using a suitable combinatioh- of
refinements (dividing elements into smaller ones) @nefinements (incrasing their polynomial degree).
The exponential convergence makes the method a very attractive choice compared to most other finite
element methods which onlpeverge at aalgebraicrate. An excellent demonstration of the exponential
convergence rate ¢ip-FEM for viscoelastic fluid flows has been provided by Khomeatal[54].For the
solution of system ofimultaneouscoupled, nonlinear systemsartlinary differential equationas given

in (15-17), with the boundary conditions &), we first assume

h (28)

2 2 3,2
vh o w208, ot MW TRw, 29
WK W n 1o 1K N %ng
2
LWT o Wy WS 27W2h g Ec A WM opW {05 0(30)
Pr w¢ WK w W © WM © ‘A K sz@ K\
2
W/ le f_ W 5, Tws Nt ZTWO (31)
WK WK w©o Nb W
and the corresponding boundary conditions now become;
Ko f f,fcl 71 /1 (32a)

Kof, fco, TO /C (320)
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3.3.Variational Formulation

The variational form associated wigluations Z8)-(31) over a typical linear element; ( K .,), is

given by:

K. i

3w TWK ledK O (33

K

K1 2 318

aw, W Wo2n8, 2h—'W _hew o TR o (34)

K WK W n 1© W N 3,

K1

3w, LWT oWy W WS 27V"2hr Q7T Ec &’ LN d"Y<o

LT Pruwk W W W o K o A vaf@¢W
(39

e iy W, fwg Nt 2 fw

3w, - e f—r ®d 0 36

PR e’ Wo Nb 2K (39

wherew, ,w,, w,andw,are arbitrary test functions and may be viewed as the variation in

f,h, andr ,respectively.

3.4.Finite Element Formulation

The finite element model may be obtained from above equations by substituting finite element
approximations of the form;

rl) |p |p |p
£ lfi, h Ui Tl T 37
j1 1 j1 i1

with

weoow owowy Iy, i 1,2..,p (38)

In our computations, the shape functions for a typical element () are:

In global coordinates X X, X; X,

O O O O O
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| X % X % X %..(x X) | P
XX X % X %e(xox) T (39)
In local coordinates:
For p 2(linear element) lh,
........... O O O O Oeeescsescnne
K K1
e (Ki XK e (KK
IS , | 5 K dKdK, (40)
(K, & (K XK “
p 3(Quadratic elemejh, e —»|
........... o g Wi Wi Wiy g e W e W e VU
K K.
e (/gl KZ)KeK )K l e 4( /9(51 K)
' (/gl 52 ’ 2 ( e/{ e)k ’ (41)
e (K, K2 XK KJK
p 4 (Cubic element)
ok
........... 10200000000 0 0 __0 O rrn
KK,
e (£, 2K3R K RBIK KK 9 KL K3)Ks K.
' 20K, & ne 204 K ’

o UK BUK 2 K3)KK) Ko (KK 2K, 3U oK RB) K
’ 2K, & e 20K K ’
K & Kd (42)

and so on.

The finite element model of the equations thus formedvisgby;

T (K [T (KT (0 (g
fkrg kA (KT KT g (42
{(Ksl] [Kgﬂ [Kaj3 [Kﬂ4 A F« {t}@»

L »

BCOIKD KT KT S5 {847 “3)
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wherd K™and b™] (m n 1,2,3,4)are defined as:

Ki:}.l e1 ,i &d/{ Kjlz Kél l ,]_ dK l$13 %14
e V\K Ke
K2 /gélml dk, 2 0
i ¥ KT KT 0
K
o W, K, . Vﬁ 8§ aKJ
‘., 2 e PR ‘<
K22 ﬂWdK;(;Eldelg o 3 - © "
« W= Wl « ! f - wh w »
e ¢ 3 f ‘dK 3l——d K —d
. WK Vk . ‘ 2 J(g_ /g

K1 2 & & Th .
K*  PrEck 31,9 g k2 preck 3—hvv7hw & PrEc 13-*‘%%

i p W(J g W J(I
K1 W & v & _ A
K? 3%—JdK NtPr 3| %®&—-d KPr Sh—yvd K2Pr 4,ld K (44)
x WKWK s L & W K
K1 _ W.
K NbPr 3| #—dK
WK
K
LS W W
K K*® 0, K® Nt 3——ldK
WK
K
fowl, £ W £
Ki* Nb 3——-dK LeNb 3] —-dK 2 NbLe 3 H d
x WK € K &
_ 2 §/él /g]_
o 0,1 li%( Kl 2h—hK s T g lij—@
w /@@)/é w offg
o 4 gty
I I d K@/é K *1 1
where
— p__ — _ _ p_ — p_
h Ih,i’ hc' DM 7d T—W, /lc iﬂ (45)
i 7w Ly VK b s v

3.5. Validation of Numerical Solution.

Validation of the presemiumerical slutions is demonstratei two ways. Firstly, an extensive mesh
testing procedurdor the h-type and hp-type Galerkin schemeéas beerconductedto ensure arid-
independensolutionfor thegiven boundary value probleras documenteid Table 1 It is observed that

in the same domaihy increasing the polynomial degree of approximation, one can adhiedesired
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accuracy with less DOH éble 1). Also, arbitrary values of the thermophysical parametgesselected to
verify the resultandvery little variationobserve in the computationsThe total CPU timesn a Dell
T5500 system have also been inéddn Table 1 and it is apparent that the desired accuracy is achieved
for both heat and mass transfer rates, \pitB with an optimal time of 1128.11%hus, forthe present
study a polynomial degree of approximatige8 and number of elements,=500hae been adopted.
Secondly|n order to verify the accuracy of the numerisalutions the validityof the present numerical
codehas beerbenchmarkedor the speciaktaseof Newtonian flow in the absence of viscous heating,
heat source/sink, wall suctiom@ vanishing thermophoresis and Brownian motion effects with constant

surface temperature of the sheet i.e. ki, Ec=0, Q=0,f, =0, No Nt 10°and CST. This special case
was studied earlier byvang[62], Gorla and Sidawig3] and Khan and Poj26] and inspectionfoTable
2 shows excellent correlation of local Nusselt numberf0)) with CST as computed with HPEM and
the other published computations, for different values of PTalme 3 the hpFEM results are further
compared with Khan and P& for different canbinations of Nb and NiThe results are also validated
with earlier computations dflatarajaet al. [64], Mushtaget al. [65] and Chen[66] for secondgrade
viscoelasticfluid flow with PST keepingec=0, Q=0, k =0,f,=0,Nb Nt 10°and no work due to
elastic deformatio as shown inrable 4. Finally, the validation of code is conducted for different heat
source/sink paramete and large values of Prandtl numbBr, with Liu [67] and Chen §6] keeping
k=1, Ec =0.2, f, = 0 in Table 5 Very good agreement idound in tle comparison with minimal
percentage errors. Overall therefore confidence in the preséiEMpcomputations is very high.

For solving above boundary value problem and to give a better approximation for the solution, the

suitable guess value of (length ofthe domain) is chosen satisfying all boundary conditions. We take the
series of values for 7g0)| and| /¢0)| with different values ofK (such as = 4, 6, 8)ith different

numbers of element& and orders of polynomialy chosen so that the numerical results olediare

independent of K (seeTable 1). For computational purposes, the region of integratida considered
as 0 to K= 6, where K corresponds tox o t which lies significantly outside the momentum and

thermal boundary layers.

The entire flow domaircontains4001grid points. At each node fofunctions are to be evaluated,
hence after assembly of the element equations, we obtain a systéfi0dfequations which araon
linear. Therefore, an iterative scherhas been employeit the solution. The system is diarized by
incorporating the functions,h and 7, which are assumed t@ave some prescribed valuter imposing
the boundary conditions, a system1&097equationsare produced and these @a@ved by the Gauss
elimination method sustaining throughout the coraponhal process an accuracylof. The iterative
process is terminated when the following condition is satisfied:

L ) d 0

i

R (46)
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where ) denotes either ,h, 7or /, andmdenotes the iterative stepaussian quadrature is implemented

for solving the integrationg&xcellent convergendeas beemchieved for all the results.

4. Results and Discussion

To provide a physical insight into theresent bienanopolymer manufacturinglow problem,
comprehensive numerical computations are conducted for various valuespafaheeters that describe
the flow characteristics and the results are illustrated graphiGalgcted computations are presented in
Figs. 2 to 13 In all cases, default values of the governing parameters a5, Le = 10, Nb=Nt = 0.3,

Pr=10, Ec=0.1, @=0.5, f, Ounless otherwise stated. These physically correspond to strong
viscoelasticity, strong Brownian motion and thermophoresis, weak viscous heating, heat source presence
and a solid sheet case (no transpiration at the wall).

Figure 2 shows the profilesof stream function f), velocity (f (), temperature ) and
nanoparticle concentration/} for defaultvalues of the thermophysicplrametersSmooth profiles are
achieved in all cases demonstrating excellent convergence of the finite element comp8atans.
function clearly ascends with distance into the boundary layer, whereas velocity, temperature and
nanoparticle concentration all descend i.e. these functions are maximized at the wall.

Figures 3 and 4represents the stream function and velocitgfipes for different values of viscoelastic
parameterk ranging O to 2It is noted thatk = O is for viscous fluidk> O stands for secorgrade
nanofluid Significant Bownian motion and thermophoresige presentThe stream function is found to

be stongly enhanced with increasing viscoelasticity parameter. All profiles ascend exponentially from
zero at the wall to a maximum in the freestreatnidvelocity howeverdecreases exponentially from
unity at the wall to zero at the free stredntreasingviscoelastitty also elevates the fluid velocity i.e.
enhancesnomentum boundary laydhickness The viscoelastic nature of tH@o-nanofluid therefore
benefits the flow and induces acceleration in the boundary layer refinigetrend has been confirmed

in other studies using other viscoelastic4Newtonian formulations for nanofluids, for example
Krishnamurthyet al.[47]. Similar observations have been documented with Jefferys viscoelastic
fluid model by Hussairt al [48] and also the OldroyB modelby Khanet al.[49]. Of course
these models have a different formulation to the one studied in the currentlpapever they

do demonstrate similar rheological effects, confirming that the computations elaborated in the
present work are in general consig with other studies.

The effecs of suction/injection on the velocignd temperature distribution aheistrated inFig.

5 and Fig 6respectivelyfor a second gradeandluid. As compared to an impermeable shefgt € 0), it
is clear that suctionf(,> 0) has the effect to reduce the boundary layer thickness and thus the velocity,

whereas injection {,< 0) tends to thickethe boundary layer and the velocity incresaaecordingly.

Thussuctionacts as a powerful control mechanism for the boundary fayeri.e. decelerates the flow
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Temperature (Fig 6) is also observed to be significantly decreased with increasing suction whereas the
converse effect is sustained for increasing injection. Blowing of nanofluid into the boundary layer regime
(injection) trerefore heats the boundary layer significantly in addition to accelerating the tenmal
boundary layethickness ishereforeaccentuatedvith an increase of injectiowith the reverse effect
inducedwith suction (see Fig. 6)

In Fig 7, the effects oftemperature dependehéat source/sink@) on temperature distribution
are shown. The termy(T, T) signifiesthe amount of heat generated / absorbed per unit vplgiaea
constant, which may take on either positive or negative values. When the wall temp&ja¢xeeeds
the free stream temperatufg , a heat sourceorresponds t@> 0 anda heat sinko Q< 0 whereasvhen

T, T, the opposite relationship is true. The presence of heat source in the boundary layer generates

energy whichassists thermal convection andosts temperature This increase in temperature
simultaneously accelerates tihew field due to the buoyancy effe@n the other hand, the presence of
heat sink in the boundary layer absorbs energy which causes the temperature of tledbaicase
Thermal boundary layer thickness of the viscoeldstpolymernanofluidsheetwill be increased with a
heat source and depleted with a heat sink.

The effecs of Brownian motion parameteib and thermophoresis parametit, on temperature
areshown inFig.8. As expected, the boundary layer profiles for the temperature are of the same form as
in the case of regulaviscoelasticfluids. The temperature in the boundary layer increases with the
increase in the Brownian motion paramethiib)(and thermophosis parameterNt). The Brownian
motion of nanoparticles can enhance thermal conductiorsetaral methods including for example,
direct heat transferowing to nanoparticles oby virtue of micro-convection of fluid surrounding
individual nanoparticles. df larger diameterparticles, Brownian motiorwill be weaker and the
parameterNb will have lower values. For smaller diameter particles Brownian motion will be greater and
Nb will have larger values. In accordance with this, we observe that temperataremhanced with
higherNb values whereas they are reduced with loiWiewvalues. Brownian motion therefore contributes
significantly to thermal enhancement in the boundary layer regime (figSi®jilarly increasing
thermophoresigNt) which isdue to tenperature gradierand associated with particle depositiaso
leads toanincreasen the temperature profil@s witnessed in Fig. &urthermore Fig 8 also exhibits the
reduction in temperatures caused by an increaBeandtl numberThe larger vales of Prandtl number
(Pr) imply a much lower thermal conductivity of the viscoelabi@nanofluid which serveto depress
thermal diffusion and cools the boundary layer regime.

Fig. 9illustratestheresponse ofemperature profilgto a variation ireEckert number with/without
work done due to deformation keepifdp=Nt=05, k=0.5, Pr=Le=10f,=0.1, Q=1.0.Viscous heating
enhancesemperatures and thickettse thermal boundary layeHowever thancrease isnarkedlymore

pronouncedor the case ofvork dore due to deformatigrrather than in absence of work done due to

deformationfor high value of Eckert number.
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Fig 10 presents he variation in dimensionless heat transfer ratis Eckert number and
furthermore includes the influence bbb and Nt paraneters on the dimensionless heat transfer rates
Viscousdissipation (as characterized by the Eckert humbad work done by deformatiostrongly
decrease the heat transfeince greater thermal energy is dissipated in the boundary layer regime and this
results in a depletion of heat transferred to the Waidkeover, heat transfer rate is also decreased with the
increase of Brownian motion and thermophoresiisce as established earlier both Brownian motion and
thermophoresis enhance boundary layer teatpees leading to a reduction in transport of heat to the
wall. Thesetrends concur with the earlier computationskdfan andPop [26]. It is evident overall from
fig 10 that the dimensionless heat transfer ratedecreasing function diib, NtandEc.

Figures 11 and 1Zepictthe variation otemperature and nanopartidencentration for various
Lewis numbersl(e). Lewis number defines the ratio of thermal diffusivity to mass diffusivity. It is used
to characterize fluid flows where there is simultarssbheat and mass transfer by convection. Effectively,
it is also the ratio of Schmidt number and the Prandtl nuniteenperature and thermal boundary layer
thickness are slightly decreased with an increase in Lewis number (figNdrigparticleconcentrabn
function ( )/, is howeverfound to bevery significantlyreduced with increasing Lewis numligég. 12).

This is attributable to the decrease in mass (species) diffusivity associated with an increase in Lewis
number. Species diffusion rate is therefor@rdesed as Lewis number increases which manifests in a
strongfall in concentrations.

Fig. 13 depicts the distributions ahe mass transfeunction (ShRe*? with heat source/sink
parameter @) for different valus of suction/injection parameter. Thmass transfer increasevith
increase of heat sourd®>0) whereas it is decreased with increasing heat sink paramgtéy. (An
increase ininjection parameter(f, <0) strongly suppressethe mass transfer at the wall whereas
increasing suction is foun@d tnhance itThe presence of a heat source and wall suction therefore have
significant beneficial effects on transport phenomena in stretching sheet nanofluid processing, whereas a

strong heat sink and blowing (injection) tend to inhibit transport.

5. Conclusions

In the present papesi,mathematical modés developed fowiscoelastidio-nanapolymer extrusion from

a stretching sheetith Brownian motion and thermophoresis effects incorporated. The governing partial
differential equations for mass, montem, energy and species conservatiorr@neerednto a system of
coupled, nonlineamrdinary differential equations by using a similarity transformatfidre higher order
finite element methodhp-FEM) has been implementetd solve the resulting twpoint nonlinear
boundary value problem more efficientixcellent correlation with previous published results has been
achievedThe computations have shown that

1. Anincrease in thpolymerfluid viscoelasticity(ki) accelerates the flow
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2. Increasing Brownian motion parameterNp) and thermophoresis parametedt)( enhance
temperature in the boundary layer regiwhereas they reduce the heat transfer rates (local
Nusselt number function)

3. Thekinetic energy dissipatiornrépresentetty the Eckert numbeEc) due to viscouseatingand
deformation work has the effect to thicken the thermal boundary kyerstrongly elevase
temperature in the viscoelastinoancbio-polymer.

4. Increasing the Lewis numbelLd) decreasesemperaturewveakly whereas it stronglyeduces
nanoparticleeoncentratioa
An increase irfPrandtl numbe(Pr) significantly decreasdemperaturg
The presence of internal heat generatiQn>(0) enhancesemperatureand therefore reduces the
heat transfer rat@ocal Nusselt numbefunction), with the opposite trencgustainedor the case
of heat absorption (Q < 0) for nanofluid.

7. Increasing suctionf{ >0) strongly decelerates the nanofluid boundary layer flow, decreases
nanofluid temperatures and enhances mass transfer rates (local Shewndoel function),
whereas increasing injectidifi, <0) accelerags the flow, enhances temperatures and depresses

wall mass transfer rates.

The present HFEM shows excellent accuracy and stability and will be employed in further simulating
flows of inteestin bio-nanepolymer manufacturing process@svolving other viscoelastic models e.g.

Maxwell fluids [68] and also nanparticle geometry effec{§9].

Acknowledgment: Dr. O. Anwar Bég is grateful to the late Professor Howard Brefi®292014)of
Chamical Engineering, MIT, USA, for some excellent discussions regarding viscoelastic characteristics

of biopolymers.
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Fig. 4- Effect of viscoelastic parametda) onvelocity distribution withNt=Nb=0.3,Pr=10.0,

Le=10.0,Ec=0.1,f,=0, Q=0.5.
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Le=10.0,Ec=0.1k;=0.5, Q=0.05.
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Fig. 7- Effect ofinternal heat sourcerk parameter@) ontemperaturelistribution withNt=Nb=0.3Pr=10.0,
Le=10.0,Ec=0.1k:=1.0, f,=0.
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Fig. 8- Effect of Prandtl numbe¢Pr) ontemperaturalistributionfor both (i) Nt=Nb=10%, and (iiNt=Nb=0.3,
Le=10.0,Ec=0.1k;=1.0, Q=0.5f,=0.
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Fig. 9 Effect of Eckert numberEc) on temperature distribution with/without deformation effect keeping
Nb=Nt=0.3,k;=1.0,Pr=Le=10,,=0.0, Q=0.5.
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Fig. 10- Variation of heat transfer rate as functiorgaffor various various values &fb andNt keepingPr=100,

Le=10.0, f, =0.0.
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Fig. 11- Effect of Lewis numberl(e) ontemperaturalistributionwith Nb=Nt=0.1,Ec=0.1,k;=1.0,
f,=0, Q=0.5.

Fig. 12- Effect of Lewis humberl(e) on nanoparticle concentration witb=Nt=0.1,Ec=0.1,k:=1.0, f,=0, Q=0.5.
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Fig. 13- Variation of mass transfer rate as function@ffor various suction/injection parameter keeplrer10.0,

Nb=Nt=0.3,Ec=0.1
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TABLES

Table 1. Calculation of Nusselt number and Sherwood number when RpN§=03, Pr=10, Le=10,
ki=1.0, Q=0.5, Ec=0.{,,=0.

| T0) | /¢0) Total CPU

E p DOF Time(s)
K=4  K=6 K=8| K=4 K=6  K=8 K 6

400 2 3204 | 0.9754 0.9782 0.9792| 4.9215 4.8999 4.8867| 36.61
1000 2 8004 | 0.9720 0.9730 0.9738| 4.9545 4.9492 4.9402| 96.08
2000 2 16004 | 0.9708 0.9713 0.9718| 4.9606 4.9658 4.9628| 207.25
4000 2 32004 | 0.9703 0.9707 0.9711| 49771 4.9741 4.9733| 455.16
8000 2 64004 | 0.9702 0.9705 0.9707| 4.9799 4.9782 4.9772| 1229.52
10000 2 80004 | 0.9700 0.9702 0.9703| 4.9804 4.9797 4.9789| 1642.70
20000 2 160004| 0.9698 0.9%699 0.9699| 4.9801 4.9793 4.9790| 5833.80
500 4 10004 | 0.9719 0.9732 0.9744| 4.9546 4.9400 4.9362| 92.94
500 6 12004 | 0.9711 0.9715 0.9719| 4.9778 4.9603 4.9588| 231.33
500 8 16004 | 0.9700 0.9701 0.9701| 4.9802 4.9793 4.9789| 1128.11
500 10 20004 | 0.9699 0.9700 0.9700| 4.9799 4.9792 4.9789| 3811.23

E= Numter of elements; p = degree of polynomial; DOF = degrees of freedom

Table 2: Comparison of results for the reduced Nusselt numbég)) with k;=0, Ec=0, Q=0,f, =0,

Nb Nt 10°and CST.

Pr Wangp2] Gorla and Sidaw§3] Khan and Pop[26] Present results
0.07 0.0656 0.0656 0.0663 0.0655
0.20 0.1691 0.1691 0.1691 0.1691
0.70 0.4539 0.5349 0.4539 0.4539
2.00 0.9114 0.9114 0.9113 0.9113
7.00 1.8954 1.8905 1.8954 1.8953
20.00 3.3539 3.3539 3.3539 3.3539

70.00 6.4622 6.4622 6.4621 6.4621
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Table 3: Comparison of result®r the reduced Nusselt number 7t0) with k;=0, Ec=0, Q=0,f, =0,
Pr=Le=10 and CST.

Nb Nt Nur [26] Shr [26] Nur present  Shr present
0.1 0.1 0.9524 2.1294 0.9524 2.1294
0.2 0.1 0.5056 2.3819 0.5056 2.3819
0.3 0.1 0.2522 2.4100 0.2521 2.4101
0.4 0.1 0.1194 2.3997 0.1194 2.3999
0.5 0.1 0.0543 2.3836 0.0541 2.3836
0.1 0.2 0.6932 2.2740 0.6932 2.2740
0.1 0.3 0.5201 2.5286 0.5201 2.5286
0.1 0.4 0.4026 2.7952 0.4026 2.7952
0.1 0.5 0.3211 3.0351 0.3210 3.0352

Table 4: Comparison of 7t0) amongNatarajaet al [64], Mushtaget al [65], Chen B6] and the present

results for the PST case with Ec=0, Q=& f,=0,Nb Nt 10°and no work due to elastic deformation.

Nataraja Mushtaget Chen Present Percentage errol

Pr et al [64] al. [65] [66] Results |(b a)/4d 100
(a) (b)
1 1.3333 1.3349 1.33333 1.33330 0.0018
5 3.3165 3.2927 3.31684 3.31612 0.0218
10 4.7969 47742  4.79687 4.79634 0.0110
15 5.9320 59097 5.93201 5.93130 0.0120
100 15.7120 15.6884 15.7120 15.70809 0.028

400 31.6990 31.6289 31.6705 31.65534 0.0478




Table 5: Comparison of 7t0) for a secondyrade fluid with k=1, Ec =0.2,f, =0

Chen B6] Present Percentage error

Q Pr  Liu[67] (a) results (b a/d 100

(b)

01 1 1.37488 1.37488 1.37471 0.0123
10  4.59962 4.59962 4.598% 0.0150
100 14.6843 14.6843 14.8809 0.023
500 32.8796 32.8796 32.890 0.0626

0.0 1 - - 1.34313 -

10 4.48696 4.48696 4.48%01 0.0211
100 14.3328 14.3328 14.2280 0.033
500 32.0931 32.0931 32.0798 0.0414

01 1 1.29111 1.29111 1.29109 0.0154
10 4.37115 4.37115 4.37016 0.0226
100 13976 13.9715 13.%21 0.067
500 31.2848 31.2848 31.%677 0.0546
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Nomenclature:

Roman

Ay, A

Ec
Sh

sheetvelocity (m/s)
constarg (-)

internal heat source/sir{k
nanoparticle volume fractior(-)
nanoparticle volume fractior(-)
ambient nanoparticle volunieaction (-)
thermophoresis parameigey

Cartesian coordinatgsn)

temperature at theheet(K)

ambient temperature attainéd)

Temperature on theheetK)
Prandtl numbe¢-)

wall mass fluxkg/s)
wall heat flux(W/m?)

Brownian diffusion cefficient(m?s)

thermophoretic diffusion coefficiertn?/s)

velocity of stretching shedmn/s)
dimensionless stream functig¢s
gravitational acceleratiofm/s’)

Brownian motion parameter(-)
Lewis numbe(-)
Viscoelastic parametg)

Nusselt numbér)

u, x Vvelocity components along-y
axegm/s)

f, suction/injection parametgy

m powerlaw paramete(-)

Greek symbols

* stress tens@x/m?)

v parameter defined by
K QI W ()

( &), heat capacity of the fluid
(J7kgK)

( ) rescaled nanoparticle

volumefraction (-)
A similarity variabl€-)

(") dimensionlss temperatu(e
( &), effective heat capacity of the
nanoparticle materi@l/kg’K)
(/  fluid density(kg/nv)

£ volumetric expansion coefficient

of the fluid (1/K)

{/  nanoparticle mass dengikg/n)

[ stream functior-)
C fluid kinematic viscositym?/s)
R thermal diffusivitfm?s)

D , material modul{N/m?)

Rivlin £Ericksen tensors in the constitutive £ £ ,higher order viscositi€ar/s)

Relation (N/m?)
Eckert numbgr)
Sherwood numbé)

Skin friction(-)

Subscripts
w condition on the sheet (wall)
f condition far away from the

sheet (free stream)




