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Abstract:  

A numerical study is conducted of laminar viscoelastic nanofluid polymeric boundary layer stretching 
sheet flow. Viscous dissipation, surface transpiration (suction/injection), internal heat 
generation/absorption and work done due to deformation are incorporated using a second grade 
viscoelastic non-Newtonian nanofluid with non-isothermal associated boundary conditions. The 
nonlinear boundary value problem is solved using a higher order finite element method. The influence of 
viscoelasticity parameter, Brownian motion parameter, thermophoresis parameter, Eckert number, Lewis 
number, Prandtl number, internal heat generation and also wall suction on thermofluid characteristics is 
evaluated in detail. Validation with earlier non-dissipative studies is also included. The hp-finite element 
method achieves the desired accuracy at p=8 with comparatively less CPU cost per iteration (with less 
degrees of freedom, DOF) as compared to lower order finite element methods. The simulations have 
shown that greater polymer fluid viscoelasticity (k1) accelerates the flow.  A rise in Brownian 
motion parameter (Nb) and thermophoresis parameter (Nt) elevates temperatures and reduce the 
heat transfer rates (local Nusselt number function). Increasing Eckert number increases 
temperatures whereas increasing Prandtl number (Pr) strongly lowers temperatures. Increasing 
internal heat generation (Q > 0) elevates temperatures and reduces the heat transfer rate (local 
Nusselt number function) whereas heat absorption (Q < 0) generates the converse effect. 
Increasing suction (fw >0) reduces velocities and temperatures but elevates enhances mass 
transfer rates (local Sherwood number function), whereas increasing injection (fw <0) accelerate 
the flow, increases temperatures and depresses wall mass transfer rates. The study finds applications in 
rheological nano-bio-polymer manufacturing. 
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1. Introduction  

In recent years, an important trend in biopolymer manufacture has been the facility of patterning 

functional materials at different length scales [1]. This characteristic allows the precision fabrication of 

functional biopolymers for many diverse applications including cell biology, tissue engineering, bio-

optics (contact lenses, ophthalmic agents etc) and suspension fluids for medical transplants e.g. biological 
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hydrogels [2]. Many of these new biopolymers exhibit beneficial rheological properties enabling 

enhanced performance in delivery of alginates in for example the accelerated treatment of vascular 

hemorrhages, arteriovenous malformations via injection in medical micro-catheters for endovascular 

embolization [3]. The necessity to enhance mass transfer (oxygen) in microbial biopolymers [4] has also 

attracted the science of nanotechnology to the optimization of such materials. As a result nano-bio-

polymeric fluid dynamics has emerged as an exciting new research area in medical engineering. This 

domain combines the properties of functional biopolymers and nanofluids to achieve better and more 

adaptive agents for treatments via enhanced heat and mass transfer features. Nanofluids [5, 6] describe a 

solid-liquid mixture which consists of a fluid suspension containing ultra-fine particles termed 

nanoparticles. The nanoparticles Al2O3, CuO, TiO2, ZnO and SiO2 are increasingly being employed in 

biomedical systems. Typical thermal conductivity enhancements for bio-nanofluids [7] are in the range of 

15-40% over the base fluid and heat transfer coefficients enhancements have been found up to 40%. Pak 

and Cho [8] conducted comparative experimental investigations on turbulent friction and heat transfer of 

nanofluids with alumina and titanium oxide nanoparticles in a circular pipe. They tested alumina and 

titanium oxide nanoparticles with mean diameters of 13 and 27nm respectively, in water. They found that 

inclusion of a 10% volume fraction of alumina in water increased the viscosity of the fluid 200 times and 

inclusion of the same volume fraction of titanium oxide produced a viscosity that was 3 times greater than 

water. They also noticed the heat transfer coefficient increased by 45% at 1.34% volume fraction of 

alumina to 75% at 2.78% volume fraction of alumina and is consistently higher than titanium oxide 

nanofluid. Increases in thermal conductivity of this magnitude in nanofluids cannot be solely attributed to 

the higher thermal conductivity of the added nanoparticles and therefore other mechanisms and factors 

must contribute. These include particle agglomeration [9, 10, 11], volume fraction [9], Brownian motion 

[12, 13], thermophoresis, nanoparticle size [13], particle shape/surface area [2, 14], liquid layering on 

the nanoparticle-liquid interface [15], temperature [13, 16] and reduction of thermal boundary layer 

thickness. The literature on the thermal conductivity and viscosity of nanofluids has been reviewed by 

Eastman et al. [17], Wang and Mujumdar [18] and Trisaksri and Wongwises [19]. In addition, a succinct 

review on applications and challenges of nanofluids has also been provided by Wen et al. [20] and Saidur 

et al. [21]. 

Buongiorno [16] identified multiple mechanisms in the convective transport in nanofluids using a 

two-phase non-homogenous model including inertia, Brownian diffusion, thermophoresis, 

diffusiophoresis, the Magnus effect, fluid drainage and gravity. Of all of these mechanisms, only 

Brownian diffusion and thermophoresis were found to be important in the absence of turbulence effects. 

He also suggested that the boundary layer has different properties owing to the effect of temperature and 

thermophoresis. Taking Brownian motion and thermophoresis into account, he developed a correlation 

for the Nusselt number which was compared to data from Pak and Cho [8] and which correlated best with 

the latter [8] experimental data. Recently, the Buongiorno [16] model has been used by Kuznetsov and 

Nield [22] to study the natural convection flow of nanofluid over a vertical plate and their similarity 
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analysis identified four parameters governing the transport process. Rana et al. [23] investigated the 

mixed convection problem along an inclined plate in the porous medium. In the alternative approach, the 

heat transfer analysis with non-uniform heating along a vertical plate has been studied by Rana and 

Bhargava [24]. Prasad et al. [25] studied micropolar nanofluid convection from a cylinder using a finite 

difference scheme. Khan and Pop [26] used the Kuznetsov-Nield model to study the boundary layer flow 

of a nanofluid past a stretching sheet with a constant surface temperature. Subsequently several authors 

have solved the problem of nanofluid flow from a stretching sheet with different stretching and boundary 

conditions and representative articles in this regard include Rana and Bhargava [27], Uddin et al. [28, 29], 

Nedeem and Lee [30], Kandasamy et al. [31],  Bachok et al. [32] and Rana et al.[33]. 

 As mentioned earlier non-Newtonian (rheological) behaviour of nanofluids has been highlighted 

in nano-polymeric manufacturing processes by many researchers including Chen et al. [34], Chen et al. 

[35] and Gallego et al. [36]. Recently, Khan and Gorla [37] investigated heat and mass transfer in non-

Newtonian nanofluid over a non-isothermal stretching wall. Numerous applications of viscoelastic 

nanocomposite fabrication techniques [3, 4] have led to renewed interest among researchers to investigate 

viscoelastic boundary layer flow over a stretching sheet. Although numerous studies of viscoelastic 

stretching flows have been communicated by, for example, Rajagopal et al. [38, 39], Dandapat and Gupta 

[40] and Rao [41], these do not study nanotechnological materials. To improve our understanding of the 

manufacture of bio-nano-polymers via e.g. sheet extrusion from a dye, it is important to study heat 

transfer (especially cooling rates) which strongly influences the constitution and quality of manufactured 

products in biomaterials processing.Viscoelastic fluid flow generates heat by means of viscous 

dissipation and work done due to deformation. There is another important aspect, which should also be 

taken into the account in a situation when there would be a temperature-dependent heat source/sink 

present in the boundary layer region. A wide variety of problems with heat and fluid flow over a 

stretching sheet have been studied with viscoelastic fluids and with different thermal boundary conditions 

(prescribed surface temperature, PST and prescribed heat flux, PHF) and power-law variation of the 

stretching velocity. A representative sample of recent literature on computational simulations of 

viscoelastic flows based on Reiner-Rivlin differential models is provided in [42-46]. 

�7�R�� �W�K�H�� �D�X�W�K�R�U�V�¶�� �N�Q�R�Z�O�H�G�J�H��very few studies have thus far been communicated with regard to 

boundary layer flow and heat transfer of a viscoelastic polymeric nanofluid (Ethylene glycol and polymer 

based nanofluids) extruding from a stretching sheet with energy dissipation. This problem is very relevant 

to modern nano-polymeric fluid manufacture processes in the biotechnology industries wherein materials 

can be synthesized for specific medical applications including sterile coating, anti-bacterial buffers etc  

[1-4]. However some recent efforts to simulate viscoelastic flows have been communicated with 

alternative viscoelastic constitutive equations to the second grade differential model. For example 

Krishnamurthy et al. [47] employed the Williamson viscoelastic model to study reactive phase change 

heat transfer in nanofluid dynamics of porous media. Hussain et al. [48] employed the Jefferys 

viscoelastic model for magnetized Sakiadis nanofluid flow with exponential stretching and thermal 
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radiative effects. Khan et al. [49] deployed an Oldroyd-B viscoelastic model to study rheological effects 

on heat and mass transfer in 3-dimensional nanofluid boundary layer flow.  Akbar et al. [50] applied the 

elegant Eyring-Powell rheological model for magnetohydrodynamic stretching sheet flow. Mehmood et 

al. [51] also used the Jefferys model for oblique stagnation flow and heat transfer. Haq et al. [52) used the 

Eringen microplar model to study nanofluid stagnation point flow with free convection and radiative 

effects. All these studies demonstrated the significant influence of viscoelasticity in modifying velocity 

and also heat and mass transfer distributions. 

In the present paper, we focus on refining the simulations for bio-rheological polymer materials 

by incorporating a proper sign for the normal stress modulus (i.e.,1 0�D �t ) as described in Section 2. A 

numerical solution is developed for the nonlinear boundary value problem derived in the present article.  

Babuska and Guo [53] presented the basic theory and applications of h, p and h-p versions of the finite 

element methods.  Khomami et al. [54] has presented a comparative study of higher and lower order finite 

element techniques for computation of viscoelastic flows. It has been demonstrated that the hp-finite 

element method gives rise to an exponential convergence rate toward the exact solution, while all the 

lower order schemes considered exhibit a linear convergence rate. Thus, we employ an extensively 

validated, highly efficient, hp-Galerkin finite element method to obtain numerical solutions for the 

present problem. 

This paper runs as follows. In Section 2, we consider the mathematical analysis of the viscoelastic 

polymeric nanofluid flow and heat transfer with energy dissipation effects (viscous heating and work 

done due to deformation) cited above are included in the energy equation with prescribed surface 

temperature (PST case) boundary heating. A summary of the hp- finite element numerical technique is 

presented in Section 3. Section 4 presents graphical solutions and a discussion of the influence of the non-

dimensional parameters including Brownian motion parameter, thermophoresis parameter, viscoelastic 

parameter, Prandtl number, Eckert number, the surface suction/injection parameter, and internal heat 

source/sink parameter, on the flow characteristics. Finally the conclusions follow in Section 5. 

 

2. Constitutive Relations and Bio-Nano-Polymer Mathematical Model   

Let us recall the constitutive equation for an incompressible fluid of grade n (based on the postulate of 

gradually fading memory) given by Coleman and Noll [55]: 

1

( )  -
n

j
j

t PI S
� 

�* � �� �¦
     

(1)  

For 3n � , the first three tensors jS are given by: 

1 1S A .�P�            

2
2 1 2 2 1S A A .� D � D�  � �              (2) 

2
3 1 3 2 2 1 1 2 3 1 1S A (A A +A A ) (trA )A .�E �E �E� �� ��  
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where�* is the stress tensor, -PIdesignates the indeterminate part of the stress, �Pis the viscosity,1�D , 2�D are 

the normal stress moduli, and 1 2 3, ,�E �E �Eare the higher order viscosities. The Rivlin-Ericksen tensors nA are 

defined by the recursion relation: 

�� �� �� ��

�� �� �� ��

1

-1 -1 -1

.

. . , 2,3,....

T

T

n n n n

A gradV gradV

d
A A A gradV gradV A n

dt

�  � �

� �� �� �        (3) 

whereV denotes the velocity field, grad is the gradient operator and d/dtis the material time derivative.  

Thus, for the particular of a second-grade fluid, we have: 
2

1 1 2 2 1 - pI A A A�P �D �D�* � �� �� ��            (4) 

where�*  is the Cauchy stress tensor, p is the pressure, �P is the viscosity, 1�D  and 2�D  are two normal stress 

moduli with 1�D< 0, and 1A and 2A  are the first two Rivlin�±Ericken tensors defined by: 

1

1
2 1 1

( ) ( ) .

.( ) ( ) . .

T

T

A gradV gradV

dA
A A gradV gradV A

dt

�  � �

� �� ��
          (5) 

The model (4) displays normal stress differences in shear flow and is an approximation to simple fluid in 

the sense of retardation. This model is applicable to some dilute polymer solutions and is valid at low 

rates of shear. Dunn and Fosdick [56] have shown that, for the fluid modelled by Eq. (4), to be compatible 

with thermodynamics and to satisfy the Clausius�±Duhem inequality for all motions, and the assumption 

that the specific Helmholtz free energy of the fluid takes its minimum values in equilibrium, the material 

moduli must satisfy: 

1 1 20, 0, 0.�P �D �D �D�t �t �� �z                                                (6) 

However for many of the non-Newtonian fluids of rheological interest, the experimental results for 1�D  

and 2�D  do not satisfy the restrictions (6). By using data reduction from experiments, Fosdick and 

Rajagopal [57] have shown that in the case of a second-order fluid the material moduli, �P, 1�D  and 2�D  

should satisfy the following relations: 

1 1 20, 0, 0.�P �D �D �D�t �d �� �z                                                                                                                 (7) 

They also found that the fluids modeled by Eq. (4) with the relationship (7) exhibit some anomalous 

behaviors. A critical review on this controversial issue can be found in the work of Dunn and Rajagopal 

[58]. Generally, in the literature the fluid obeying Eq. (4) with 1 0�D ��  is termed as a second-order fluid 

and with 1 0�D �!  is termed as second-grade fluid. When 1 0,�D � 2 0�D � and 0,�P�! Eq. (4) reduces to the 

well-known constitutive relation for an incompressible Newtonian fluid. Eq. (4) is used in the present 

simulation. We consider steady, incompressible, laminar, two-dimensional boundary layer flow of a 

viscoelastic polymeric nanofluid past a flat sheet coinciding with the plane y 0� with the flow being 

confined toy 0�! . The flow is generated, due to non-linear stretching of the sheet, caused by the 
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simultaneous application of two equal and opposite forces along the x-axis. Keeping the origin fixed, the 

sheet is then stretched with a velocity wu Ex�  where E is a constant, and x  is the coordinate measured 

along the stretching surface, varying linearly with the distance from the slit. A schematic representation of 

the physical model and coordinates system is depicted in Fig. 1. The pressure gradient and external forces 

are neglected. The stretching surface is maintained at constant temperature and concentration, wT  and wC  

respectively, and these values are assumed to be greater than the ambient temperature and concentration, 

T�f andC�f , respectively. The governing equations for conservation of mass, momentum, thermal energy 

and nanoparticle species diffusion, for a second order Reiner-Rivlin viscoelastic nanofluid can be written 

in Cartesian coordinates, x,y as: 

0
u v
x y

� w � w
� � �  

� w � w
               (8) 

2 2 2 3

12 2 2 3

u u u u u
u u

x y y x y y y y
� X � X

�U �X �P �D �X
� ª � º� § � ·� § � ·�w �w �w �w �w �w �w �w

�� � �� �� ��� « � »� ¨ � ¸� ¨ � ¸�w �w �w �w �w �w �w �w� © � ¹� © � ¹� ¬ � ¼
     (9) 

2 22

2

1

. ( / )

( )
( ) ( )

m B T
f

f f

T T T C T T u
u D D T

x y y y y y c y

q T Tu u u
u v

c y y x y c

�Q
�X �D �W

�D
� U � U

�f

�f

� ª � º�§ �· �§ �·�w �w �w �w �w �w �w
�� � �� �� ��� « � »�¨ �¸ �¨ �¸�w �w �w �w �w �w �w� « � »�© �¹ �© �¹� ¬ � ¼

� § � ·���w �w �w �w
�� �� ��� ¨ � ¸�w �w �w �w� © � ¹

             (10) 

2 2

2 2( / )B T

C C C T
u D D T

x y y y
�X �f

�w �w �w �w
�� � ��

�w �w �w �w
                   (11) 

where 

( )
,

( ) ( )
pm

m
f f

ck
c c

�U
� D � W

� U � U
�  �  

        (12) 

subject to the boundary conditions 

2 2

, , ( ) , ( ) at 0w w w w

x x
u Ex T T x T A C C x C B y

l l
� X � X � f � f

�§ �· �§ �·� � � � �� � � �� � �¨ �¸ �¨ �¸
�© �¹ �© �¹

  (13a) 

0, / 0, , asu du dy T T C C y�X � f � f� � � � � �o �f       (13b) 

 

Here u  and v  are the velocity components along the axes x  and y , respectively, 1�D is the modulus of the 

viscoelastic fluid, f�U  is the density of the base fluid, m�D  is the thermal diffusivity, �X is the kinematic 

viscosity, E  is a positive constant, BD  is the Brownian diffusion coefficient, TD  is the thermophoretic 

diffusion coefficient and ( ) /( )p fc c�W �U �U�  is the ratio between the effective heat capacity of the 

nanoparticle material and heat capacity of the fluid, c   is the volumetric volume expansion coefficient 

and p�U   is the density of the particles. Eqns (9)-(13) are a new formulation and extend the 

Newtonian model of Rana and Bhargava [27] to a second order model, by incorporating new 
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terms from the Reiner-Rivlin model and also Eckert heating, heat generation/absorption and 

work deformation terms. Proceeding with the analysis, we introduce the following dimensionless 

variables: 

 

1/ 2 1/ 2( / ) , ( ), ( )b y u bxf b y�K �Q �K �\ �Q�c� � �   

2 2

( ), ( )
x x

T T A C C B
l l

�T �K �I �K� f � f
�§ �· �§ �·�� � �� � �¨ �¸ �¨ �¸
�© �¹ �© �¹

       (14) 

 

where the stream function �\  is defined in the usually way as /u y�\� �w �wand / x� X � \� ���w �w. In seeking a 

similarity solution based on the transformations in eqn. (14), we have taken into account that the pressure 

in the outer (inviscid) flow is   0p p�  (constant).The governing eqs. (8)-(11) then reduce to: 

 

2 2
1[2 ( ) ] 0IVf ff f k f f f ff�c�c�c �c�c �c �c �c�c�c �c�c�� �� �� �� �� �        (15) 

 

2 2
1

1
( ) 2 ( ) ( ) 0

Pr
f Nb Nt f Q Ec f k f f f ff�T �T �T �I �T �T �T � ª � º�c�c �c �c �c �c �c �c�c �c�c �c �c�c �c�c�c�� �� �� �� �� �� �� �� � � ¬ � ¼   (16) 

 

�� ��2 0
Nt

Le f f
Nb

�I �I �I �T�c�c �c �c �c�c�� �� �� �          (17) 

 

The transformed boundary conditions are 

 

0, , 1, 1, 1wf f f�K �T �I�c� � � � �         (18a) 

, 0, 0, 0f�K �T �I�c�o �f � � �         (18b) 

where( )�c denotes differentiation with respect to �K and the key dimensionless thermo-physical 

parameters are defined by: 

1/ 21
1

2 2

Pr , , , /( ) ,
( )

( ) ( ) ( ) ( )
, , ,

( ) ( )

w w
B f

p B w p T w

p f f

E q
Le k f E Q

D E c

c D C C c D T TE L
Ec Nb Nt

Ac c c T

�D� Q � Q
� X � Q

�D �U�Q �U

� U � U

�U �Q �U �Q
� f � f

�f

� � � � �� � 

� � � �
� � � 

    (19) 

Here 1Pr, , , , , , wk Le Nb Nt Ec f and Q  denote the Prandtl number, viscoelastic parameter, Lewis number, 

Brownian motion parameter, thermophoresis parameter, Eckert number, surface suction/injection 

parameter and internal heat source/sink parameter, respectively. It is important to note that this boundary 

value problem reduces to the problem of flow and heat and mass transfer due to a stretching surface in a 

viscoelastic fluid when ,Nb Ntare zero in equations (16) and (17).The presence of viscoelastic terms in 

the momentum equation (15) raises the order of this equation to one above that of the Navier-Stokes 
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equations. Well-posedness of the problem can be achieved via a number of strategies. To give a general 

review of the past work on the existence of solutions of the primitive Eqns. (8) and (9), Troy et al. [59] 

and Mcleod and Rajagopal [60] obtained a unique solution. In fact, the second condition in Eqn. (13b) is 

the property of the boundary layer in the asymptotic region. Chang [61] has claimed that the solution of 

the problem is not necessarily unique without this condition. In the absence of the viscoelastic parameter 

(i.e. 1 0k � ), Eqn. (9) reduces to a third-order ordinary differential equation for which these four 

conditions are also applicable. There is further an analytical solution in the absence of slip and 

viscoelasticity, which reads: 

1
( )

m

w
e

f f
m

�K

�K
����

�  � �with �� ��21
4 4

2 w wm f f� �� ��
                                                                                   (20)

 

Among all these, solutions of the form proposed by Troy et al. [59] are the realistic ones as we can 

recover the boundary layer approximation of Navier-Stokes solution only in the limiting case of 1 0k � .It 

is worth mentioning that eqn. (9) with the boundary conditions eqs. (13a, b) has an exact solution as given 

by: 

1
( )

m

w
e

f f
m

�K

�K
����

�  � �,                (21) 

wherem  is a real positive root of the cubic algebraic equation:  

3 2
1 1( 1) 1 0w wk f m k m f m�� �� �� �� � .                                                                                                            (22) 

The velocity profile is determined from eqn.(21) to be : 

( ) mf e �K�K ���c �                              (23) 

The skin friction coefficient fC can further be determined from: 

2

1

2

2

/ 2f
w

u u u
u

y x y y y
C

u

�X
� P � D

�U

� § � ·�w �w �w �w
� � � �� ¨ � ¸

�w �w �w �w �w� © � ¹� 
                                                                                                        (24)

 

Noting that the skin friction parameter is (0)f r�c�c� � �  , Eqn.(24) can be further simplified to: 

12 (1 3 )f
b

x C m k
�X

� �� ��
              (25)

 

For the linearly stretching boundary layer problem, the exact solution for f  is ( ) 1f e �K�K ���  � � and this 

exact solution is unique. Important heat and mass transfer quantities of practical interest for the present 

flow problem are the local Nusselt number and the local Sherwood number which are defined, 

respectively as: 

,
( ) ( )

w m
x x

w B w

xq xq
Nu Sh

k T T D C C� f � f

�  �  
� � � �

        (26)   
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where wq  and mq   are heat flux and mass flux at the surface (plate), respectively. The dimensionless heat 

and mass transfer rates can also be shown to take the form given in following expressions: 

2 2
(0), (0)x xNu Sh

ax ax

� X � X
� T � I� c � c� �� � ��         (27) 

 

The set of ordinary differential equations defined by eqns. (15)-(17) are highly non-linear and cannot be 

solved analytically. The hp-finite element method [53] has therefore been implemented to solve this 

highly coupled two-point boundary value problem to determine the velocity, temperature and nano-

particle concentration distributions. 

 

  

3. Numerical Solution: 

3.1 The finite element method 

Finite element method (FEM) was basically developed in reference to aircraft structural mechanics 

problems and has evolved over a number of decades to become the dominant computational analysis tool 

for solving the linear and non-linear ordinary differential, partial differential and integral equations. The 

finite element method provides superior versatility to other numerical methods include finite differences 

and is generally very stable with excellent convergence characteristics.  

 

3.1.1. Finite- element discretization  

The whole domain is divided into a finite number of sub-domains, designated as the discretization of 

the domain. Each sub-domain is called an element. The collection of elements comprises the finite-

element mesh. 

 

3.1.2. Generation of the element equations 

3.1.2.1. From the mesh, a typical element is isolated and the variational formulation of the given problem 

over the typical element is constructed. 

  3.1.2.2. An approximate solution of the variational problem is assumed and the element equations are 

generated by substituting this solution in the above system. 

  3.1.2.3. The element matrix, which is called stiffness matrix, is constructed by using the element 

interpolation functions. 

 

3.1.3 Assembly of element equations 

The algebraic equations so obtained are assembled by imposing the inter-element continuity conditions. 

This yields a large number of algebraic equations known as the global finite element model, which 

governs the whole domain. 
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3.1.4. Imposition of boundary conditions 

The essential and natural boundary conditions are imposed on the assembled equations.  

 

3.1.5.Solution of assembled equations 

The assembled equations so obtained can be solved by any of numerical technique including the Gauss 

elimination method, LU Decomposition method, �+�R�X�V�H�K�R�O�G�H�U�¶�V���W�H�F�K�Q�L�T�X�H�����&�K�R�O�H�V�N�L���G�H�F�Rmposition etc. 

 

3.2. hp-Finite Element Method 

hp-FEM is a general version of the finite element method (FEM), based on piecewise-polynomial 

approximations that employ elements of variable size (h) and polynomial degree (p). The origins of hp-

FEM date back to the pioneering work of Babuska et al. [53] who discovered that the finite element 

method converges exponentially faster when the mesh is refined using a suitable combination of h-

refinements (dividing elements into smaller ones) and p-refinements (increasing their polynomial degree). 

The exponential convergence makes the method a very attractive choice compared to most other finite 

element methods which only converge at an algebraic rate. An excellent demonstration of the exponential 

convergence rate of hp-FEM for viscoelastic fluid flows has been provided by Khomami et al.[54].For the 

solution of system of simultaneous, coupled, nonlinear systems of ordinary differential equations as given 

in (15-17), with the boundary conditions (18), we first assume: 

 

f
h

�K
�w

� 
�w

          (28) 

       

  The system of equations (8-10) then reduces to 

 

22 2 3
2

12 2 3

2
2 0

1
h h n h h h

f h k h f
n�K �K �K �K �K

� ª � º� § � ·�w �w �w �w �w� § � ·�� �� �� �� �� � � « � »� ¨ � ¸� ¨ � ¸�w �w �� �w �w �w� © � ¹� « � »� © � ¹� ¬ � ¼     

(29) 

2 22 2

12 2

1
2 0

Pr
h h h h

f Nb Nt h Q Ec k h f
�T �T �T �I �T

� T � T
�K �K �K �K �K �K �K �K �K

� ª � º� § � ·�§ �· �§ �·�w �w �w �w �w �w �w �w �w
�� �� �� �� �� �� �� �� � � « � »� ¨ � ¸�¨ �¸ �¨ �¸�w �w �w �w �w �w �w �w �w� « � »�© �¹ �© �¹ � © � ¹� ¬ � ¼

(30)  

2 2

2 22 0
f Nt

Le f
Nb

�I �I �T
�I

�K �K �K �K
� § � ·�w �w �w �w

�� �� �� � � ¨ � ¸�w �w �w �w� © � ¹
       (31) 

and the corresponding boundary conditions now become; 

 

0, , 1, 1, 1wf f f�K �T �I�c� � � � �         (32a) 

, 0, 0, 0f�K �T �I�c�o �f � � �          (32b) 
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3.3. Variational Formulation  

The variational form associated with equations (28)-(31) over a typical linear element, 1( , )e e e� K � K��� : �  , is 

given by : 

 

1

1 0
e

e

f
w h d

�K

�K

�K
�K

�� �  � ½�w
� � �  � ® � ¾

�w� ¯ � ¿
�³           (33) 

1
22 2 3

2
2 12 2 3

2
2 0

1

e

e

h h n h h h
w f h k h f d

n

�K

�K

�K
�K �K �K �K �K

�� �  � ½� ª � º� § � ·�w �w �w �w �w� ° � °� § � ·�� �� �� �� �� � � « � »� ® � ¾� ¨ � ¸� ¨ � ¸�w �w �� �w �w �w� © � ¹� « � »� © � ¹� ° � °� ¬ � ¼� ¯ � ¿
�³    (34) 

 

1
2 22 2

3 12 2

1
2 0

Pr

e

e

h h h h
w f Nb Nt h Q Ec k h f d

�K

�K

�T �T �T �I �T
�T �T �K

�K �K �K �K �K �K �K �K �K

�� �  � ½� ª � º� § � ·�§ �· �§ �·�w �w �w �w �w �w �w �w �w� ° � °�� �� �� �� �� �� �� �� � � « � »� ® � ¾� ¨ � ¸�¨ �¸ �¨ �¸�w �w �w �w �w �w �w �w �w� « � »�© �¹ �© �¹ � © � ¹� ° � °� ¬ � ¼� ¯ � ¿
�³

 

(35) 

 

1 2 2

4 2 22 0
e

e

f Nt
w Le f d

Nb

�K

�K

�I �I �T
� I � K

�K �K �K �K

�� �  � ½� § � ·�w �w �w �w
�� �� �� � � ® � ¾� ¨ � ¸�w �w �w �w� © � ¹� ¯ � ¿

�³       (36) 

where 1w , 2w , 3w and 4w are arbitrary test functions and may be viewed as the variation in 

, , and , f h � T � Irespectively. 

 

3.4. Finite Element Formulation 

 The finite element model may be obtained from above equations by substituting finite element 

approximations of the form; 

 
1 1 1 1

, , ,
p p p p

j j j j j j j j
j j j j

f f h h�\ �\ �T �T �\ �I �I �\
� � � � 

� � � � �¦ �¦ �¦ �¦     (37) 

 with  

  �� ��1 2 3 4 , 1,2...,w w w w i pi�\� � � � �          (38) 

In our computations, the shape functions for a typical element ( ) are: 

 

In global coordinates:   1x 2x 3x 4x    .... px  
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�� ���� ���� ��
�� ���� ���� ��

1 2 4

1 2 4

....( )
1,...

....( )
p

i
i i i i p

x x x x x x x x
i p

x x x x x x x x
�\

�� �� �� ��
�  �  

�� �� �� ��            (39)
 

In local coordinates: 

For 2p � (linear element)    eh   

 

   e�K  1e�K��  

 1
1 2 1

1 1

( ) ( )
, ,

( ) ( )
e ee e

e e
e e e e

�K �K �K �K
�\ �\ �K �K �K

�K �K �K �K
��

��
� � � �

� � � �
� � �d �d

� � � �
  (40) 

 

 

3p � (Quadratic element) eh  

  

e�K  1e�K��  

1 1 1
1 22 2

1 1

1
3 12

1

( 2 )( ) 4( )( )
, ,

( ) ( )

( 2 )( )
,

( )

e ee e e e e

e e e e

e e e e
e e

e e

�K �K �K �K �K �K �K �K �K
� \ � \

�K �K �K �K
�K �K �K �K �K

�\ �K �K �K
� K � K

�� �� ��

� � � �

��
��

��

�� �� �� �� ��
�  �  

� � � �

�� �� ��
� �� �d �d

��

   (41) 

 

4p �  (Cubic element) 

eh  

 

e�K 1e�K��  

1 1 1 1 1
1 23 3

1 1

1 1 1 1
3 43 3

1 1

1

( 2 3 )(2 3 )( ) 9( )(2 3 )( )
, ,

2( ) 2( )

9( )( 2 3 )( ) ( )( 2 3 )(2 3 )
, ,

2( ) 2( )

e ee e e e e e e e e

e e e e

e ee e e e e e e e e

e e e e

e e

�K �K �K �K �K �K �K �K �K �K �K �K �K �K �K
� \ � \

�K �K �K �K

�K �K �K �K �K �K �K �K �K �K �K �K �K �K �K
� \ � \

�K �K �K �K

�K �K �K

�� �� �� �� ��

� � � �

�� �� �� ��

� � � �

��

�� �� �� �� �� �� �� �� ��
�  �  

� � � �

�� �� �� �� �� �� �� �� ��
�  �  

� � � �

� d � d (42) 

and so on. 

The finite element model of the equations thus formed is given by; 

 

11 12 13 14 1

21 22 23 24 2

31 32 33 34 3

41 42 43 44 4

{ }[ ] [ ] [ ] [ ] { }
{ }[ ] [ ] [ ] [ ] { }
{ }[ ] [ ] [ ] [ ] { }
{ }[ ] [ ] [ ] [ ] { }

fK K K K b
gK K K K b

K K K K b

K K K K b

�T
�I

�ª �º �ª �º� ª � º
�« �» �« �»� « � »
�« �» �« �»� « � »� 
�« �» �« �»� « � »
�« �» �« �»� « � »
�« �» �« �»� ¬ � ¼�¬ �¼ �¬ �¼      (43)
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where[ ]and [ ] ( , 1,2,3,4)mn mK b m n� are defined as: 

1 1

1

11 12 13 14

21 23 24

, , 0,

, 0,

e e

e e

e

e

j
ij i ij i j ij ij

ij i j ij ij

K d K d K K

h
K d K K

� K � K

� K � K

�K

�K

�\
�\ �K �\ �\ �K

�K

�\ �\ �K
�K

� � � �

��

�w
� � �� � � 

�w

�w
� �� � � 

�w

� ³ � ³

�³
 

1 1

1 1

1 1 1

22
1 2 2

2 2

2

,

e e

e e

e e

e e e
e e

e e e

ji i
j

ji
ij i j

j j ji
i i

h
h d d

K d h d k
f h

f d d d

� K � K

� K � K
� K � K

�K �K �K
� K � K

�K �K �K

�\� \ � \
�K �\ �K

�K �K �K �K�\�\
�K �\ �\ �K

� K � K �\ �\ �\�\
�K �\ �K �\ �K

�K �K �K �K �K �K

� � � �

� � � �

�� �� ��

� ª � º� § � ·�w� w � w�w
� « � »� � � �� ¨ � ¸

� ¨ � ¸�w �w �w �w� « � »�w�w � © � ¹� �� �� �� � « � »
� w � w �w �w �w�« �w �»� w � w

�� �� ��� « � »�w �w �w �w �w �w� ¬ � ¼

� ³ � ³
� ³ � ³

�³ �³ �³

 

1 1 1

1 1 1 1
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31 32

1 12

33

34

Pr , Pr Pr

Pr Pr 2Pr ,

Pr

e e e

e e e

e e e e

e e e e

ji
ij i j ij i j i
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K Nb
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�K �K �K �K

�K �K �K �K

�\
�\ �\ �K �\ �\ �K �\ �K
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�\ �\ �\�\
�K �\ �T �K �\ �K �\ �\ �K
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ee
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�K
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�� ��� § � ·� § � ·� § � ·� w � w
� � �� �� �� � ��� ¨ � ¸� ¨ � ¸� ¨ � ¸� ¨ � ¸� w � w � © � ¹� © � ¹� © � ¹

��� § � ·� § � ·
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where 

1 1 1 1

, , ,
p p p p

i i i
i ii i i

i i i i

h h h h
�\ �\ �\

�\ �T �T �I �I
�K �K �K� � � � 

�w �w �w
�c �c �c� � � � 

�w �w �w�¦ �¦ �¦ �¦    (45) 

     

3.5. Validation of Numerical Solution. 

Validation of the present numerical solutions is demonstrated in two ways. Firstly, an extensive mesh 

testing procedure for the h-type and hp-type Galerkin schemes has been conducted to ensure a grid- 

independent solution for the given boundary value problem, as documented in Table 1. It is observed that 

in the same domain by increasing the polynomial degree of approximation, one can achieve the desired 
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accuracy with less DOF (Table 1). Also, arbitrary values of the thermophysical parameters are selected to 

verify the resultsand very little variation observed in the computations. The total CPU times on a Dell 

T5500 system have also been included in Table 1 and it is apparent that the desired accuracy is achieved 

for both heat and mass transfer rates, with p=8 with an optimal time of 1128.11s. Thus, for the present 

study a polynomial degree of approximation, p=8 and number of elements, E =500have been adopted. 

Secondly, In order to verify the accuracy of the numerical solutions, the validity of the present numerical 

code has been benchmarked for the special case of Newtonian flow in the absence of viscous heating, 

heat source/sink, wall suction and vanishing thermophoresis and Brownian motion effects with constant 

surface temperature of the sheet i.e. withk1=0, Ec=0, Q=0, wf =0, 510Nb Nt ���  �  and CST. This special case 

was studied earlier by Wang [62], Gorla and Sidawi [63] and Khan and Pop [26] and inspection of Table 

2 shows excellent correlation of  local Nusselt number ((0)�T�c�� ) with CST as computed with hp-FEM and 

the other published computations, for different values of Pr. In Table 3, the hp-FEM results are further 

compared with Khan and Pop[26] for different combinations of Nb and Nt. The results are also validated 

with earlier computations of Nataraja et al. [64], Mushtaq et al. [65] and Chen [66] for second-grade 

viscoelastic fluid flow with PST keeping Ec=0, Q=0, 1k =0, wf =0, 510Nb Nt ���  �  and no work due to 

elastic deformation as shown in Table 4. Finally, the validation of code is conducted for different heat 

source/sink parameter, Q and large values of Prandtl number, Pr, with Liu [67] and Chen [66] keeping 

1k = 1, Ec = 0.2, wf  = 0 in Table 5. Very good agreement is found in the comparison with minimal 

percentage errors. Overall therefore confidence in the present hp-FEM computations is very high. 

For solving above boundary value problem and to give a better approximation for the solution, the 

suitable guess value of �K�f (length of the domain) is chosen satisfying all boundary conditions. We take the 

series of values for (0)�T�c��  and (0)�I�c��  with different values of �K�f   (such as = 4, 6, 8) with different 

numbers of elements, E and orders of polynomial, p chosen so that the numerical results obtained are 

independent of  �K�f  (see Table 1). For computational purposes, the region of integration �K is considered 

as 0 to �K�f = 6, where �K�f  corresponds to �K� o � f  which lies significantly outside the momentum and 

thermal boundary layers. 

The entire flow domain contains 4001grid points. At each node four functions are to be evaluated; 

hence after assembly of the element equations, we obtain a system of 16004 equations which are non-

linear. Therefore, an iterative scheme has been employed in the solution. The system is linearized by 

incorporating the functions,  and f h �T, which are assumed to have some prescribed value. After imposing 

the boundary conditions, a system of 15097 equations are produced and these are solved by the Gauss 

elimination method sustaining throughout the computational process an accuracy of410�� . The iterative 

process is terminated when the following condition is satisfied: 

1 4
, ,

,

10m m
i j i j

i j

� � � ��) �� �) �d�¦
         (46)
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where �)  denotes either , ,f h �Tor �I , and m denotes the iterative step. Gaussian quadrature is implemented 

for solving the integrations. Excellent convergence has been achieved for all the results. 

 

4. Results and Discussion 

To provide a physical insight into the present bio-nanopolymer manufacturing flow problem, 

comprehensive numerical computations are conducted for various values of the parameters that describe 

the flow characteristics and the results are illustrated graphically. Selected computations are presented in 

Figs. 2 to 13. In all cases, default values of the governing parameters are: 1k =0.5, Le = 10, Nb=Nt = 0.3, 

Pr=10, Ec=0.1, Q =0.5, 0wf � unless otherwise stated. These physically correspond to strong 

viscoelasticity, strong Brownian motion and thermophoresis, weak viscous heating, heat source presence 

and a solid sheet case (no transpiration at the wall). 

Figure 2 shows the profiles of stream function (f ), velocity ( f �c), temperature (�T) and 

nanoparticle concentration (�I ) for default values of the thermophysical parameters. Smooth profiles are 

achieved in all cases demonstrating excellent convergence of the finite element computations. Stream 

function clearly ascends with distance into the boundary layer, whereas velocity, temperature and 

nanoparticle concentration all descend i.e. these functions are maximized at the wall.   

Figures 3 and 4 represents the stream function and velocity profiles for different values of viscoelastic 

parameter, 1k  ranging 0 to 2. It is noted that 1k  = 0 is for viscous fluid, 1k > 0 stands for second-grade 

nanofluid. Significant Brownian motion and thermophoresis are present. The stream function is found to 

be strongly enhanced with increasing viscoelasticity parameter. All profiles ascend exponentially from 

zero at the wall to a maximum in the freestream. Fluid velocity however decreases exponentially from 

unity at the wall to zero at the free stream. Increasing viscoelasticity also elevates the fluid velocity i.e. 

enhances momentum boundary layer thickness. The viscoelastic nature of the bio-nanofluid therefore 

benefits the flow and induces acceleration in the boundary layer regime. This trend has been confirmed 

in other studies using other viscoelastic non-Newtonian formulations for nanofluids, for example 

Krishnamurthy et al. [47]. Similar observations have been documented with Jefferys viscoelastic 

fluid model by Hussain et al. [48] and also the Oldroyd-B model by Khan et al. [49]. Of course 

these models have a different formulation to the one studied in the current paper; however they 

do demonstrate similar rheological effects, confirming that the computations elaborated in the 

present work are in general consistent with other studies.  

The effects of suction/injection on the velocity and temperature distribution are illustrated in Fig. 

5 and Fig 6 respectively, for a second grade nanofluid. As compared to an impermeable sheet (wf  = 0), it 

is clear that suction (wf > 0) has the effect to reduce the boundary layer thickness and thus the velocity, 

whereas injection (wf < 0) tends to thicken the boundary layer and the velocity increases accordingly. 

Thus suction acts as a powerful control mechanism for the boundary layer flow i.e. decelerates the flow. 
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Temperature (Fig 6) is also observed to be significantly decreased with increasing suction whereas the 

converse effect is sustained for increasing injection. Blowing of nanofluid into the boundary layer regime 

(injection) therefore heats the boundary layer significantly in addition to accelerating the flow. Thermal 

boundary layer thickness is therefore accentuated with an increase of injection with the reverse effect 

induced with suction (see Fig. 6) 

In Fig 7, the effects of temperature dependent heat source/sink (Q) on temperature distribution 

are shown. The term ( )q T T�f ��  signifies the amount of heat generated / absorbed per unit volume, q is a 

constant, which may take on either positive or negative values. When the wall temperature wT  exceeds 

the free stream temperature, �fT , a heat source corresponds to Q> 0 and a heat sink to Q< 0 whereas when 

�f��wT T , the opposite relationship is true. The presence of heat source in the boundary layer generates 

energy which assists thermal convection and boosts temperatures. This increase in temperature 

simultaneously accelerates the flow fi eld due to the buoyancy effect. On the other hand, the presence of a 

heat sink in the boundary layer absorbs energy which causes the temperature of the fluid to decrease. 

Thermal boundary layer thickness of the viscoelastic biopolymer nanofluid sheet will be increased with a 

heat source and depleted with a heat sink. 

The effects of Brownian motion parameter, Nb and thermophoresis parameter, Nt, on temperature 

are shown in Fig.8. As expected, the boundary layer profiles for the temperature are of the same form as 

in the case of regular viscoelastic fluids. The temperature in the boundary layer increases with the 

increase in the Brownian motion parameter (Nb) and thermophoresis parameter (Nt). The Brownian 

motion of nanoparticles can enhance thermal conduction via several methods including for example, 

direct heat transfer owing to nanoparticles or by virtue of micro-convection of fluid surrounding 

individual nanoparticles. For larger diameter particles, Brownian motion will be weaker and the 

parameter, Nb will have lower values. For smaller diameter particles Brownian motion will be greater and 

Nb will have larger values. In accordance with this, we observe that temperatures are enhanced with  

higher Nb values whereas they are reduced with lower Nb values. Brownian motion therefore contributes 

significantly to thermal enhancement in the boundary layer regime (fig 8). Similarly increasing  

thermophoresis (Nt) which is due to temperature gradient and associated with particle deposition, also 

leads to an increase in the temperature profile, as witnessed in Fig. 8. Furthermore Fig 8 also exhibits the 

reduction in temperatures caused by an increase in Prandtl number. The larger values of Prandtl number 

(Pr) imply a much lower thermal conductivity of the viscoelastic bio-nanofluid which serves to depress  

thermal diffusion and cools the boundary layer regime.  

Fig. 9 illustrates the response of temperature profiles to a variation in Eckert number with/without 

work done due to deformation keeping Nb=Nt=0.5, 1k =0.5, Pr=Le=10,wf =0.1, Q=1.0. Viscous heating 

enhances temperatures and thickens the thermal boundary layer. However the increase is markedly more 

pronounced for the case of work done due to deformation, rather than in absence of work done due to 

deformation, for high value of Eckert number.  
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Fig 10 presents the variation in dimensionless heat transfer rates with Eckert number, and 

furthermore includes the influence of Nb and Nt parameters on the dimensionless heat transfer rates. 

Viscous dissipation (as characterized by the Eckert number) and work done by deformation strongly 

decrease the heat transfer, since greater thermal energy is dissipated in the boundary layer regime and this 

results in a depletion of heat transferred to the wall. Moreover, heat transfer rate is also decreased with the 

increase of Brownian motion and thermophoresis, since as established earlier both Brownian motion and 

thermophoresis enhance boundary layer temperatures leading to a reduction in transport of heat to the 

wall. These trends concur with the earlier computations of Khan and Pop [26]. It is evident overall from 

fig 10 that the dimensionless heat transfer rate is a decreasing function of Nb, Nt and Ec. 

Figures 11 and 12 depict the variation of temperature and nanoparticle concentration for various 

Lewis numbers (Le). Lewis number defines the ratio of thermal diffusivity to mass diffusivity. It is used 

to characterize fluid flows where there is simultaneous heat and mass transfer by convection. Effectively, 

it is also the ratio of Schmidt number and the Prandtl number. Temperature and thermal boundary layer 

thickness are slightly decreased with an increase in Lewis number (fig. 11). Nanoparticle concentration 

function, ( )� I � K, is however found to be very significantly reduced with increasing Lewis number (fig. 12). 

This is attributable to the decrease in mass (species) diffusivity associated with an increase in Lewis 

number. Species diffusion rate is therefore depressed as Lewis number increases which manifests in a 

strong fall in concentrations.  

Fig. 13 depicts the distributions of the mass transfer function (ShxRex
1/2) with heat source/sink 

parameter (Q) for different values of suction/injection parameter. The mass transfer increases with 

increase of heat source (Q>0) whereas it is decreased with increasing heat sink parameter (Q<0). An 

increase in injection parameter (fw <0) strongly suppresses the mass transfer at the wall whereas 

increasing suction is found to enhance it. The presence of a heat source and wall suction therefore have 

significant beneficial effects on transport phenomena in stretching sheet nanofluid processing, whereas a 

strong heat sink and blowing (injection) tend to inhibit transport. 

 

5.  Conclusions 

In the present paper, a mathematical model is developed for viscoelastic bio-nano-polymer extrusion from 

a stretching sheet with Brownian motion and thermophoresis effects incorporated. The governing partial 

differential equations for mass, momentum, energy and species conservation are rendered into a system of 

coupled, nonlinear, ordinary differential equations by using a similarity transformation. The higher order 

finite element method (hp-FEM) has been implemented to solve the resulting two-point nonlinear 

boundary value problem more efficiently. Excellent correlation with previous published results has been 

achieved. The computations have shown that: 

1. An increase in the polymer fluid viscoelasticity (k1) accelerates the flow.  
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2. Increasing Brownian motion parameter (Nb) and thermophoresis parameter (Nt) enhance    

temperature in the boundary layer region whereas they reduce the heat transfer rates (local 

Nusselt number function).  

3. The kinetic energy dissipation (represented by the Eckert number, Ec) due to viscous heating and 

deformation work has the effect to thicken the thermal boundary layer and strongly elevates 

temperatures in the viscoelastic nano-bio-polymer. 

4. Increasing the Lewis number (Le) decreases temperature weakly whereas it strongly reduces 

nanoparticle concentrations. 

5. An increase in Prandtl number (Pr) significantly decreases temperatures. 

6. The presence of internal heat generation (Q > 0) enhances temperatures and therefore reduces the 

heat transfer rate (local Nusselt number function), with the opposite trend sustained for the case 

of heat absorption (Q < 0) for nanofluid.  

7. Increasing suction (fw >0) strongly decelerates the nanofluid boundary layer flow, decreases 

nanofluid temperatures and enhances mass transfer rates (local Sherwood number function), 

whereas increasing injection (fw <0) accelerates the flow, enhances temperatures and depresses 

wall mass transfer rates. 

 

The present hp-FEM shows excellent accuracy and stability and will be employed in further simulating 

flows of interest in bio-nano-polymer manufacturing processes involving other viscoelastic models e.g. 

Maxwell fluids [68] and also nano-particle geometry effects [69]. 
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FIGURES 
 

 

 

Fig.1 Physical Model and Co-ordinate system 

 

Fig. 2- Profiles of stream, velocity, temperature and nanoparticle concentration function for Nt=0.3, Nb=0.3, 

Pr=10.0, Le=10.0, k1=0.5, Ec=0.1, wf =0, Q=0.5. 



 
 

 

25 

 

Fig. 3- Effect of viscoelastic parameter (k1) on stream function distribution with Nt=Nb=0.3, Pr=10.0, Le=10.0,  

Ec=0.1, wf =0, Q=0.5. 

 

Fig. 4- Effect of viscoelastic parameter (k1) on velocity distribution with Nt=Nb=0.3, Pr=10.0,  

Le=10.0, Ec=0.1, wf =0, Q=0.5. 
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Fig. 5- Effect of suction/injection parameter (wf ) on velocity distribution with Nt=Nb=0.3, Pr=10.0, Le=10.0, 

Ec=0.1,k1=1.0, Q=0.05. 

 

 

Fig. 6- Effect of suction/injection parameter (wf ) on temperature distribution with Nt=Nb=0.3, Pr=10.0,  

Le=10.0, Ec=0.1,k1=0.5, Q=0.05. 
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Fig. 7- Effect of internal heat source/sink parameter (Q) on temperature distribution with Nt=Nb=0.3,Pr=10.0, 

Le=10.0, Ec=0.1,k1=1.0, wf =0. 

Fig. 8- Effect of Prandtl number (Pr) on temperature distribution for both (i) Nt=Nb=10-5, and (ii)Nt=Nb=0.3, 

Le=10.0, Ec=0.1,k1=1.0, Q=0.5, wf =0. 
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Fig. 9- Effect of Eckert number (Ec) on temperature distribution with/without deformation effect keeping 

Nb=Nt=0.3, k1=1.0, Pr=Le=10, fw=0.0, Q=0.5. 

 

 

Fig. 10- Variation of heat transfer rate as function of Ec for various various values of Nb and Nt keeping Pr=10.0, 

Le=10.0, wf  =0.0. 
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Fig. 11- Effect of Lewis number (Le) on temperature distribution with Nb=Nt=0.1, Ec=0.1, k1=1.0, 

wf =0, Q=0.5. 

 

Fig. 12- Effect of Lewis number (Le) on nanoparticle concentration with Nb=Nt=0.1, Ec=0.1, k1=1.0, wf =0, Q=0.5. 
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Fig. 13- Variation of mass transfer rate as function of Q  for various suction/injection parameter keeping Le=10.0, 

Nb=Nt=0.3, Ec=0.1 
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TABLES 

 

Table 1. Calculation of Nusselt number and Sherwood number when Nb=0.3, Nt=0.3, Pr=10, Le=10, 

k1=1.0, Q=0.5, Ec=0.0,wf =0. 

 

 

E 

 

p 

 

DOF 

 (0)�T�c��    (0)�I�c��   Total CPU 

Time(s) 

�K�f =4 �K�f =6 �K�f =8 �K�f =4 �K�f =6 �K�f =8 6�K�f �  

400 2 3204 0.9754 0.9782 0.9792 4.9215 4.8999 4.8867 36.61 

1000 2 8004 0.9720 0.9730 0.9738 4.9545 4.9492 4.9402 96.08 

2000 2 16004 0.9708 0.9713 0.9718 4.9606 4.9658 4.9628 207.25 

4000 2 32004 0.9703 0.9707 0.9711 4.9771 4.9741 4.9733 455.16 

8000 2 64004 0.9702 0.9705 0.9707 4.9799 4.9782 4.9772 1229.52 

10000 2 80004 0.9700 0.9702 0.9703 4.9804 4.9797 4.9789 1642.70 

20000 2 160004 0.9698 0.9699 0.9699 4.9801 4.9793 4.9790 5833.80 

500 4 10004 0.9719 0.9732 0.9744 4.9546 4.9400 4.9362 92.94 

500 6 12004 0.9711 0.9715 0.9719 4.9778 4.9603 4.9588 231.33 

500 8 16004 0.9700 0.9701 0.9701 4.9802 4.9793 4.9789 1128.11 

500 10 20004 0.9699 0.9700 0.9700 4.9799 4.9792 4.9789 3811.23 

 

E= Number of elements; p = degree of polynomial; DOF = degrees of freedom. 

 

 

Table 2: Comparison of results for the reduced Nusselt number, (0)�T�c��  with k1=0, Ec=0, Q=0, wf =0,  

510Nb Nt ���  �  and CST. 

 

Pr Wang[62] Gorla and Sidawi[63] Khan and Pop[26] Present results 

0.07 0.0656 0.0656 0.0663 0.0655 

0.20 0.1691 0.1691 0.1691 0.1691 

0.70 0.4539 0.5349 0.4539 0.4539 

2.00 0.9114 0.9114 0.9113 0.9113 

7.00 1.8954 1.8905 1.8954 1.8953 

20.00 3.3539 3.3539 3.3539 3.3539 

70.00 6.4622 6.4622 6.4621 6.4621 
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Table 3: Comparison of results for the reduced Nusselt number, (0)�T�c��  with k1=0, Ec=0, Q=0, wf =0, 

Pr=Le=10 and CST. 

 

Nb Nt Nur [26] Shr [26] Nur present Shr present 

0.1 0.1 0.9524 2.1294 0.9524 2.1294 

0.2 0.1 0.5056 2.3819 0.5056 2.3819 

0.3 0.1 0.2522 2.4100 0.2521 2.4101 

0.4 0.1 0.1194 2.3997 0.1194 2.3999 

0.5 0.1 0.0543 2.3836 0.0541 2.3836 

0.1 0.2 0.6932 2.2740 0.6932 2.2740 

0.1 0.3 0.5201 2.5286 0.5201 2.5286 

0.1 0.4 0.4026 2.7952 0.4026 2.7952 

0.1 0.5 0.3211 3.0351 0.3210 3.0352 

 

 

 

 

Table 4: Comparison of (0)�T�c��  among Nataraja et al. [64], Mushtaq et al. [65], Chen [66] and the present 

results for the PST case with Ec=0, Q=0, k1=0, wf =0, 510Nb Nt ���  �  and no work due to elastic deformation. 

 

 

Pr 

Nataraja 

 et al. [64] 

Mushtaq et 

al. [65] 

Chen 

[66]  

(a) 

Present 

Results 

(b) 

Percentage error 

( ) / 100b a a� � � u 

1 1.3333 1.3349 1.33333 1.33330 0.0018 

5 3.3165 3.2927 3.31684 3.31612 0.0218 

10 4.7969 4.7742 4.79687 4.79634 0.0110 

15 5.9320 5.9097 5.93201 5.93130 0.0120 

100 15.7120 15.6884 15.7120 15.70809 0.0249 

400 31.6990 31.6289 31.6705 31.65534 0.0478 
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Table 5: Comparison of (0)�T�c��  for a second-grade fluid with k1 = 1, Ec = 0.2, wf  = 0 

 

 

Q 

 

Pr 

 

Liu [67] 

Chen [66] 

(a) 

Present 

results  

(b) 

Percentage error 

( ) / 100b a a� � � u 

-0.1 1 1.37488 1.37488 1.37471 0.0123 

 10 4.59962 4.59962 4.59893 0.0150 

 100 14.6843 14.6843 14.6809 0.0231 

 500 32.8796 32.8796 32.8590 0.0626 

0.0 1 - - 1.34313 - 

 10 4.48696 4.48696 4.48601 0.0211 

 100 14.3328 14.3328 14.3280 0.0335 

 500 32.0931 32.0931 32.0798 0.0414 

0.1 1 1.29111 1.29111 1.29109 0.0154 

 10 4.37115 4.37115 4.37016 0.0226 

 100 13.9715 13.9715 13.9621 0.0673 

 500 31.2848 31.2848 31.2677 0.0546 
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note (-) �P�H�D�Q�V���³�K�D�V���Q�R���G�L�P�H�Q�L�R�Q�V�´ 

Nomenclature: 
Roman      

wu  sheet velocity (m/s)    u ,�X velocity  components along x - y  

, ,A B E constants (-)      axes(m/s) 

Q  internal heat source/sink (-)   
wf   suction/injection parameter(-) 

C  nanoparticle volume fraction (-)  m  power-law parameter (-) 

wC  nanoparticle volume fraction (-)   Greek symbols 

C�f  ambient nanoparticle volume fraction (-) �*  stress tensor(N/m2) 

Nt  thermophoresis parameter (-)   �W parameter defined  by  
( x , y ) Cartesian coordinates (m)    ( ) /( )p fc c�H �U �U (-)  

wT     temperature at the sheet (K)   ( ) fc�U  heat capacity of the fluid  

                                                                                                          (J/kg3K)    
T�f  ambient temperature  attained (K)  ( )� I � K rescaled nanoparticle 

T  Temperature on the sheet (K)    volume fraction (-) 
Pr Prandtl number (-)    �K similarity variable(-) 

mq  wall mass flux (kg/s)    ( )� T � K dimensionless temperature(-) 

wq  wall heat flux (W/m2)    ( ) pc�U  effective heat capacity of the  

BD  Brownian diffusion coefficient(m2/s)   nanoparticle material(J/kg3K)    

TD  thermophoretic diffusion coefficient (m2/s) f�U  fluid density (kg/m3)   

wu  velocity of stretching sheet (m/s)  �E volumetric expansion coefficient 

( )f �K  dimensionless stream function  (-)               of the fluid (1/K) 
( )g �K  gravitational acceleration (m/s2)  p�U  nanoparticle mass density(kg/m3)

  
Nb  Brownian motion parameter (-)  �\  stream function (-) 
Le    Lewis number(-)    �Q fluid kinematic viscosity (m2/s)     
k1 Viscoelastic parameter(-)    m�D  thermal diffusivity(m2/s)      

xNu  Nusselt number(-)    1 2,� D � D material moduli (N/m2) 

A1, A2 Rivlin�±Ericksen tensors in the constitutive  1 2 3, ,�E �E �Ehigher order viscosities (m
2/s)     

Relation (N/m2)     Subscripts 
Ec Eckert number(-)    w  condition on the sheet (wall) 

xSh  Sherwood number(-)    �f  condition far away from the  

fC  Skin friction(-)       sheet (free stream) 

    
          

    
    
   
        
  
 


