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Abstract 

The steady, axisymmetric laminar natural convection boundary layer flow from a non-isothermal vertical 

circular porous cone under a transverse magnetic field, with the cone vertex located at the base, is 

considered. The pressure work effect is included in the analysis. The governing boundary layer equations 

are formulated in an (x,y) coordinate system (parallel and normal to the cone slant surface), and the 

magnetic field effects are simulated with  a hydromagnetic body force term in the momentum equation. A 

dimensionless transformation is performed rendering the momentum and also heat conservation equations. 

The thermal convection flow is shown to be controlled by six thermophysical parameters- local Hartmann 

number, local Grashof number, pressure work parameter, temperature power law exponent, Prandtl 

number and the transpiration  parameter. The transformed parabolic partial differential equations are 

solved numerically using the Network Simulation Method (NSM) based on the electrical-thermodynamic 

analogy. Excellent correlation of the zero Hartmann number case is achieved with earlier electrically non-

conducting solutions. Local shear stress function (skin friction) is found to be strongly decreased with an 

increase in Prandtl number (Pr), with negative values (corresponding to flow reversal) identified for 

highest Pr with further distance along the streamwise direction. A rise in local Hartmann number, is 

observed to depress skin friction.  Increasing temperature power law index, corresponding to steeper 

temperature gradient at the wall, strongly reduces skin friction at the cone surface. A positive rise in 

pressure work parameter decreases skin friction whereas a negative increase elevates the skin friction for 

some distance along the cone surface from the apex. Local heat transfer gradient is markedly boosted with 

a rise in Prandtl number but decreased principally at the cone surface with increasing local Hartmann 

number. Increasing temperature power law index conversely increases the local heat transfer gradient, at 

the cone surface. A positive rise in pressure work parameter increases local heat transfer gradient while 

negative causes it to decrease.  A rise in local Grashof number boosts local skin friction and velocity into 

the boundary layer; local heat transfer gradient is also increased with a rise in local Grashof number 

whereas the temperature in the boundary layer is noticeably reduced. Applications of the work arise in 

spacecraft magnetogas dynamics, chemical cooling systems and industrial magnetic materials processing. 
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1. INTRODUCTION 
The ever-increasing interest in understanding better the aero-thermodynamics and near-field heat 

transfer in astronautical bodies such as spacecraft, space modules, satellites etc has continued to 

stimulate significant research efforts. Of the geometries analyzed, spherical bodies, cones and 

wedge configurations have received special attention. Convective heat transfer is important in 

tubular thrust rocket chambers [1], rocket nozzle design [2] and various aspects of industrial 

manufacturing technologies [3]. Bartz [4] reported on convection heat transfer from a rocket 

nozzle. Streif [5] studied experimentally the heat transfer to a cone with a 70 degrees apex angle 

at several angles of attack in a wind tunnel at free stream Mach number of 7. He obtained good 

correlation with conical flow theory. Braun et al [6] used an integral method to study the 

isothermal free convection similarity flows about two-dimensional and axisymmetric bodies over 

a wide spectrum of Prandtl. Hering and Grosh [7] showed that boundary layer similarity solutions 

are only possible for convection from a cone when the surface temperature variation is a power 

function of distance along a cone ray. Isothermal solutions were also presented as were linear 

temperature variation solutions for Prandtl number of 0.7. Hering [8] subsequently extended this 

work to consider lower Prandtl number cases. Roy [9] presented a similar model to Hering [8], 

for the case of high Prandtl numbers. Na and Chiou [10] over a decade later discussed the effect 

of slenderness i.e. conical geometry, on free convection flow, with applications in rocket nose 

aerodynamic heat transfer. Lin [11] examined the isothermal case for large cone angles where 

boundary layer thickness is small in comparison with the local cone radius, neglecting therefore 

transverse curvature effects. Alamgir [12] has employed an integral method to investigate the 

effective heat transfer rates in free convection laminar boundary layers on a vertical cone. Pop 

and Takhar [13] have studied compressibility effects in laminar conical body free convection 

using shooting numerical methods. More recent studies of the convection from a cone have been 

reported by Hossain et al [14] who studied temperature-dependent viscosity effects. Hossain and 

Paul [15] studied transpiration effects and later Takhar et al [16] analyzed numerically the 

influence of thermophysical property variation on gas convective heat transfer over a vertical 

cone. More recently Chamkha et al [17] have studied computationally the effect of unsteadiness 

and also compressibility on a cone. Very recently Roy et al [18] have re-examined the transient 

convection boundary layer flow over a cone with transpiration effects. Singh and Roy [19] have 

also studied the development of unsteady mixed convection flow of an incompressible laminar 

viscous fluid over a vertical cone with the fluid in the external stream set into motion impulsively, 

and a simultaneous sudden surface temperature. The problem was shown to reduce at t = 0, to a 

Rayleigh type of equation and as t → ∞, to a Falkner–Skan type of equation. The scale of time 
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has been selected such that the traditional infinite region of integration become finite which 

significantly reduce the computational time. Using the quasi-linearization technique they showed 

that there is a smooth transition from the initial steady state to the final steady state. Kumari, and 

Nath [20] have considered the unsteady laminar compressible boundary layer over a circular cone 

at an angle of attack near a plane of symmetry in hypersonic flow. The case of the boundary layer 

near the windward and leeward planes has been considered with suction effects. The effects of the 

variable fluid properties, non-unity Prandtl number and viscous dissipation were considered. 

Computations showed that in a small time interval immediately after the start of the impulsive 

motion, the direction of the heat transfer changes. The surface shear stresses in the streamwise 

and cross-wise directions and the surface heat transfer, increased with time and attained the final 

steady state values rapidly i.e. small spin-up times were reported. The total enthalpy at the wall 

was shown to considerably influence the surface shear stresses in the streamwise and cross-flow 

directions and the surface heat transfer. Suction was found to strongly affect the surface shear 

stress in the streamwise direction and the surface heat transfer.  These studies were all confined to 

electrically non-conducting fluids. However due to the ionized nature of air in hypersonic flows 

and astronautical transport the flow can become electrically-conducting i.e. hydromagnetic. At 

weak magnetic fields basically a Lorentzian drag force is imparted to the flow field; at higher 

magnetic field strengths, ionslip and Hall currents also arise. Magnetogas dynamics has therefore 

received considerable attention in the aerospace engineering community for several decades. An 

excellent treatise on the subject is available in Pai [21].  Motivated largely by high temperature 

processes involved in space craft re-entry and interaction with planetary magnetospheric layers, 

engineers have considered a number of magneto-gas convection flows past various geometrical 

configurations. Sluyter and Touryan [21] studied the magnetohydrodynamic (MHD) compressible 

boundary layer flow on a rotating cone. Surma Devi et al [22] investigated the combined effects 

of the magnetic field, mass transfer, and heat transfer on the steady incompressible laminar 

boundary-layer flow of an electrically conducting fluid over a non-isothermal cone using a 

shooting method. The magnetic field or injection were shown to reduce both the skin friction and 

heat transfer, with the converse behaviour exhibited for the effect of suction. Heat transfer was 

also shown to be increased for higher Prandtl numbers. The influence of a radial magnetic field 

on MHD flow between a cone and cylinder rotating co-axially was reported by Singh et al [23]. 

Further studies on hydromagnetic convection from a cone have been reported in the context of 

industrial and geophysical processes by Chamkha [24], Chamkha et al. [25], Chamkha [26] and 

more recently by Chamkha and Al-Mudhaf [27]. These studies did not consider the important 

effect of pressure work or viscous dissipation. Alam et al [28] very recently utilized the Gebhart 
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formulation [29] for pressure work effect in natural convection from a porous cone using the 

Keller-box numerical method. Takhar and Soundalgekar [30] studied viscous heating and stress 

work effects on boundary layer convection using a shooting scheme. Several studies have also 

appeared concentrating on the influence of non-isothermal surface temperature variation, 

although not in the context of boundary layer convection from a cone. Of the important studies 

conducted we mention here the analysis by  Soundalgekar et al [31], Soundalgekar et al [32] who 

considered transient stagnation point hydromagnetic convection flow with non-isothermal effects 

and Ganesan et al [33]. In the present analysis we shall consider the hydromagnetic gas 

convection flow past a circular cone geometry (e.g. spacecraft nose), with significant pressure 

work effects and  non-isothermal surface temperature variation. Such a study has thusfar not been 

communicated in the literature despite important applications in spacecraft magneto-gas dynamic 

heat transfer. A transformed version of the conservation equations is solved numerically. The 

influence of surface transpiration (of importance in cooling  astronautical bodies during re-entry), 

local Hartmann hydromagnetic number, Prandtl number, local Grashof  number, non-isothermal 

parameter and pressure work parameter on surface skin friction and Nusselt number are computed 

and described graphically.  

 

2. MATHEMATICAL MODEL 

The physical problem to be investigated is shown in Figure 1. 

 

Figure 1: Physical model for magnetohydrodynamic heat transfer from a cone 

We consider the steady, two-dimensional, laminar, incompressible, axisymmetric, hydromagnetic 
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isothermal vertical circular cone in a Cartesian (x,y) coordinate system. The x-direction is 

measured along the cone surface from the leading edge, O. A uniform magnetic field is applied 

perpendicular to the cone surface. For laminar, incompressible, electrically-conducting, 

Newtonian fluids subjected to a transverse magnetic field, the fluid is known to experience a 

retarding force. The motivation of the present study is to elucidate the interaction of magnetic 

force with thermal and aerodynamic velocity boundary layers along the entire geometry of the 

cone surface. The Maxwell field equations, as described by Landau and Lifschitz [34]  comprise 

five vector equations- the Ampere law, magnetic field continuity, Faraday’s law, Kirchoff’s law 

and finally Ohm’s law. The generalized equations in vectorial form, for flow of an electrically-

conducting gas are the Maxwell equations: 

  

  LawsAmpere'JB       (1) 

 

)(0 EquationMaxwellContinuityFieldMagnetic  B   (2) 

 

LawsFaraday
t

'





B
E      (3) 

 

LawsKirchoff '0 J      (4) 

 

LawsOhmv '][ BEJ        (5) 

 

where J is the current density, B is the magnetic field vector,  is the electrical conductivity, E is 

the electrical field intensity vector,  is density, v is the velocity vector,   is viscosity, t is time. 

From an order of magnitude analysis, it can be shown [34] that for two-dimensional (x-y) 

magneto-hydrodynamic gas dynamic flows, the hydromagnetic retarding force (Lorentz body 

force) acts only parallel to the flow and has the form: 

 

   Fmagnetic    -By
2u      (6) 

 

where By is the component of magnetic field in the y-direction. We consider an aerodynamic 

viscous flow where the magnetic field is sufficiently weak to sustain a small magnetic Reynolds 

number such that induced magnetic field effects can be neglected. Joule electro-heating and Hall 
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current/ionslip effects are also neglected. Pressure work effects are however significant and 

included. The x-direction is parallel to the cone slant surface, the y-direction normal to this. The 

governing boundary layer equations for the steady, axisymmetric, electrically-conducting gas 

flow regime can be posed as follows with reference to the (x,y)  coordinate system: 

Conservation of Mass: 
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Conservation of Thermal Energy (Heat):  
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where u, v are the velocity components in the x- and y-directions,  is kinematic viscosity, g is 

gravitational acceleration,  is thermal diffusivity of the gas,  is the coefficient of volume 

expansion, T is fluid temperature,  is cone apex half angle, cp is the isobaric specific heat of the 

gas,  is density of the gas,   is electrical conductivity of the gas and B0 is magnetic field.  The 

Boussinesq approximation has been used so that buoyancy effects only appear in the x-direction 

momentum equation, which is coupled to the energy equation, constituting a free convection 

regime. Viscous dissipation effects are neglected. The corresponding boundary conditions at the 

surface and far from the cone are, following Hossain et al. [14]:   

.0)(,,0  yatxTTVvu w       (10) 

 

.,0   yasTTu        (11) 

 

where TW is the cone surface temperature (> T), T is the ambient fluid temperature, V denotes 

transpiration velocity of fluid via the cone surface (lateral mass flux velocity). For V > 0, suction 

through the cone surface from the boundary layer occurs i.e. gas removal. With V < 0 injection 

i.e. blowing of gas into the boundary layer occurs. We consider both cases and also the case of a 

solid cone surface i.e. V = 0, in the present study.  The equations (7) to (9) are highly coupled, 
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parabolic and nonlinear. An analytical solution is clearly intractable and in order to facilitate a 

numerical solution we non-dimensionalize the model.  

 

3. TRANSFORMATION OF MAGNETO-CONVECTIVE MODEL EQUATIONS 

We now introduce the following transformations: 
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where  is the streamwise coordinate (dimensionless transpiration parameter),  is the spanwise 

pseudo-similarity coordinate,  is stream function, r is radial coordinate, G(,)  is dimensionless 

temperature function, F(,) is dimensionless stream function, Grx is the local Grashof number, n 

is the temperature power law exponent, Pr is Prandtl number, Hax is local Hartmann number and 

 is the pressure work parameter. Eqns. (22) and (23) are the Cauchy-Riemann equations which 
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identically satisfy the conservation of mass equation (7).  Implementing these transformations in 

the conservation equations (7) to (9), we arrive at the following dimensionless nonsimilar partial 

differential equations: 
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The transformed boundary conditions now become: 

 

At the cone surface ;  

 = 0:   1;0 
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We note that  while the present equations are valid for free convection, setting Grx  1 reduces 

the system to a mixed convection regime. We seek a full numerical solution to the transformed 

local non-similar partial differential equations (24) and (25) under the boundary conditions (26) 

and (27). Of importance in rocket (and other areas of technological) heat transfer are several key 

design parameters based on the differentials of the velocity and temperature functions, F and G. 

Using a reference velocity, U (= [Gr]1/2/x), the local skin friction coefficient, Cfx, is defined as: 
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The local Nusselt number, Nux, takes the form:  
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4. SPECIAL CASES OF THE FLOW MODEL 

Let us briefly concentrate now on a number of special cases which can be retrieved from the 

general flow model discussed in section 3.  

 

Case I: Non-magnetic Non-Isothermal Gas Convection from Permeable Cone  

Setting Hax  0 eliminates the Lorentz body force term due to the magnetic field and reduces the 

momentum equation to the case considered by Alam et al [28]. 
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The energy equation (24) and boundary conditions (26) and (27) are unchanged. One objective of 

the present study is to investigate the interaction of Hartmann number with the suction parameter, 

. Blowing i.e.  <0 has been implemented in many practical rocket/space craft designs in liquid 

propellant systems. For example sweat cooling involves the injection of fluid or gas via porous 

walls. Alternatively film cooling utilizes the presence of an injection pattern providing a layer of 

relatively cool gas in the wall vicinity which serves to significantly reduce heat transfer at the 

surface [35]. Blowing however is not considered here for brevity. 

 

Case II: Non-magnetic Non-Isothermal  Gas Convection from  Solid Cone   

Setting   0 reduces our general model to the one-dimensional model considered in a classical 

study by Hering and Grosh [7]. In this case, equations (24) and (25) reduce to: 
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Infact for this one-dimensional case, a simple Runge-Kutta-Merson shooting algorithm or a finite 

element “line” model would provide robust solutions. However we have elected to use NSM in 

the present study. 
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Case III: Non-magnetic Isothermal Gas Convection from Permeable Cone   

Setting n  0 (with Hax = 0) reduces the general model to the two-dimensional (, ) isothermal 

cone surface case, considered by Na and Chiou [9]. In this case, the momentum and energy 

equations (24) and (25) simplify to: 
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Case IV: Mixed Non-magnetic Isothermal Gas Convection from Permeable Cone without 

Pressure Work   

Setting Grx  1 renders the viscous hydrodynamic force in the boundary layer of the same order 

as the buoyancy force and the flow becomes a mixed convection regime. The  coordinate will 

therefore reduce to 



Vx

 in equations (31) and (32). Also with  0, pressure work effects 

vanish. This reduces the energy equation (34) to: 
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5. NSM NUMERICAL SOLUTIONS 

NSM has been used extensively in many areas of heat transfer, fluid dynamics and multi-physical 

transport phenomena [35,36]. To solve the set of non-linear differential equations (24-25) subject 

to boundary condition (26-27), the Network Simulation Method is very suitable. The principal 

advantage of NSM is that it can accommodate any type of non-linearity into the model 

whether in terms of boundary conditions, convective terms, coupled (buoyancy) terms, 

nonlinear acceleration terms, shear terms, phase-change processes, temperature-

dependencies of the thermal properties and so on. It also involves considerably less 

laborious algebra than standard finite difference or finite element methods. NSM further 

allows a good analogy with thermo-electrics since it permits easy representation of 

complex thermal and fluid terms via resistors, capacitors and non-linear devices that seek 

to resemble thermal systems governed by unsteady linear or non-linear equations. NSM 
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is also equally versatile at solving both unsteady and steady-state problems and has a 

powerful advantage in that programming of the code (Pspice) avoids the conventional 

pathway of other numerical methods which require manipulation of the sophisticated 

mathematical software. The third-order differential equation (24) is converted to second-order 

by substituting H = F´. Subsequently all second-order equations for H and G are discretized using 

three-point central difference quotients while the first-order differential equation H = F´ is 

discretized by the trapezoidal rule. The equations (24-25) may therefore be re-written as: 
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In NSM the starting point is the set of ordinary differential equations, one for each control 

volume, obtained either by spatial discretization of the equations (36-37). Based on these 

equations, a network circuit is designed, whose equations are formally equivalent to the 

discretized ones. The variables, F, H and G are equivalent to the variable voltage, and their 

derivates are equivalent to the electric current. A sufficient number of networks are connected in 

series to constitute the whole medium and boundary conditions are added by means of special 

electrical devices. The whole network must be coded in an adequate program that can be solved 

by a computer code. The cases studied here were solved by the software code Pspice [37] using a 

PC. The following currents are defined: 
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With these definitions of the currents, the dimensionless equations of momentum, and energy 

may be postulated in the following form: 
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With spatial discretization of the dimensionless equations in Nη cells of length η=ηmax/Nη, with 

Nη=150 in the η-direction and of Nξ cells of length ξ=ξmax/Nξ in the ξ-direction with Nξ=60, the 

network partial differential equations (39), (40) can be transformed into a system of connected 

differential equations. A second-order central difference scheme has been used to discretize this 

non-linear system of equations. The following currents (41a-41d) are implemented by means of 

resistors of value “Y” and others currents are implemented with the voltage control current 

generator: 

 

jH,i,j-η = (Hi,j-η - Hi,j)/ η        (41a) 

jH,i,j+η = (Hi,j - Hi,j+η)/η        (41b) 

jG,i,j-η = (Gi,j-η - Gi,j)/η        (41c) 

jG,i,j+η = (Gi,j - Gi,j+η)/η       (41d) 

 

A first-order central difference approximation is used for the first derivate and a second-order 

central difference scheme employed to discretize the non-linear system for the second derivates. 
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    (42g) 

 

In the equations (39) and (40) all the terms can be treated as a current. Therefore implementing 

Kirchhoff’s law for electrical currents from circuit theory, the network model is generated. To 

introduce the boundary conditions, voltage sources are employed to simulate constant values of 

velocity and temperature. Similarly, the equations (31) and (32) (which correspond to Case II) 

can be modeled by means of NSM and it is possible to obtain the numerical solutions to ξ = 0. 

These are subsequently input as boundary conditions for a solution for ξ > 0, which is two-

dimensional.  

 

6. COMPUTATIONS AND DISCUSSION 

The heat transfer regime is controlled by six parameters- Hax, , n, Grx, Pr, . In most  cases we 

have plotted 
2

2
4/1 ]0,(










F
GrC xfx

 versus  and 









 )0,(4/1 G
GrNu xx

 versus . The range 

of the abscissa is taken as  0    5. Default values are set as Hax = 1,  = 0,  n = 0.4, Grx = 10, 

Pr = 0.72. In this study as in Alam et al [28] only suction is considered i.e.  > 0. To validate the 

present NSM solutions we have made comparisons with the classical study of Hering and Grosh 

[7] and also more recent implicit finite difference Keller-box solutions presented by Hossain et al 

[14]. These are presented in Tables 1 and 2. Excellent correlation has been achieved with both 

[7] and [14] over several n values and also a wide range of Pr values, testifying to the validity of 

the NSM technique.  
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n  0.0 1.0 

Method 

2

2 ]0,(







 F
 










]0,(G
 

2

2 ]0,(







 F
 










]0,(G
 

Hering & 

Grosh [7] 

0.81959 0.45120 0.72480 0.56699 

Hossain et 

al. [14] 

0.81894 0.45110 0.72362 0.56659 

Present 

NSM 

0.81928 0.45310 0.72462 0.56871 

Table 1; Comparison for non-conducting case [Hax = 0], for =0, n = 0 and 1.0, ε =0 and Pr = 

0.7  

 

Pr  0.01 0.05 0.10 

Method 

2

2 ]0,(







 F
 










]0,(G
 

2

2 ]0,(







 F
 










]0,(G
 

2

2 ]0,(







 F
 










]0,(G
 

Hossain et al. [14] 

(ξ=0) 

1.23231 0.08828 1.09069 0.18300 1.01332 0.24584 

Present NSM 

(ξ=0) 

1.23550 0.08851 1.09590 0.18346 1.00939 0.24722 

Hossain et al. [14] 

(ξ=0.4) 

1.48846 0.09021 1.25262 0.19304 1.14437 0.26630 

Present NSM 

(ξ=0.4) 

1.48345 0.09025 1.25257 0.19323 1.14566 0.26645 

Hossain et al. [14] 

(ξ=1.0) 

1.78637 0.09297 1.49247 0.20726 1.32826 0.29731 

Present NSM 

(ξ=1.0) 

1.78679 0.09290 1.49287 0.20719 1.32856 0.29712 

Hossain et al. [14] 

(ξ=4.0) 

3.37732 0.10585 2.26468 0.28720 1.66712 0.47828 

Present NSM 

(ξ=4.0) 

3.37712 0.10574 2.26455 0.28713 1.66735 0.47849 

Table 2; Comparison for non-conducting case [Hax = 0], for  = 0, 0.4, 1.0 and 4.0 with n = 

0.5, ε =0 and Pr = 0.01, 0.05 and 0.1 
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Figures 2 and 3 show the influence of the Prandtl number, Pr, on 
2

2
4/1 ]0,(










F
GrC xfx

 and 










)0,(
/

4/1 G
GrNu xx

. An increase in Pr strongly reduces the skin friction at the cone 

surface ( =0), a trend sustained along the cone slant surface i.e. with increasing . For Pr = 3, 5 

and 7, the skin friction becomes negative far from the cone apex (i.e. leading edge of the 

boundary layer) indicating back flow. For higher Pr fluids the thermal diffusivity is reduced and 

momentum diffusivity is increased i.e. momentum is diffused faster than heat. Increasing Prandtl 

number implies an increase in dynamic viscosity and a decrease in thermal conductivity of the 

fluid. As such lower Prandtl numbers correspond to gases (low viscosity and high thermal 

conductivity) and higher Prandtl numbers to oils (high viscosity, lower thermal conductivities). 

For low Prandtl number the fluid will flow faster i.e. velocities will be increased which will 

enhance skin friction at the cone surface, as testified by figure 2. Conversely with an increase in 

Pr, local Nusselt number function, NuxGrx
-1/4, is significantly increased. The response in figure 3 

is also much more gradual and approximately linear compared with the skin friction (figure 2). 

Clearly an increase in Pr implies that thermal diffusivity exceeds momentum diffusivity so that 

heat is diffused at a faster rate than momentum, leading to an escalation in heat transfer gradient 

at the cone surface. NuxGrx
-1/4  is maximized at the trailing edge (maximum ) and minimized at 

the leading edge (apex i.e.  =0) for any value of Prandtl number. 

Figures 4 and 5 depict the response of 
2

2
4/1 ]0,(










F
GrC xfx

 and 









)0,(
/

4/1 G
GrNu xx

 to 

local Hartmann number, Hax, with coordinate along the cone surface, . In the momentum eqn 

(24), the hydromagnetic term incorporating Hax, 


F

Gr

Ha

x

x

2/1

2

 is a drag force term. Increasing Hax, 

with constant Grx, will therefore serve to decelerate the flow in the momentum boundary layer. 

We note that this parameter physically can be regarded as the ratio of magnetic viscous force to 

hydrodynamic viscous force. Cramer and Pai [38] have shown that magnetism has a strong effect 

on velocity profiles, causing a reduction in flow and shear stresses.  In accordance with this, we 

observe in figure 4 that as Hax is increased from 0 (non-conducting case) through 0.5, 1.0, 2.0 to 

5.0, a strong decrease is induced in the skin friction. Skin friction is also found to be diminished 

with increasing distance along the cone surface from the leading edge (apex). This behaviour is 

consistent with that reported in numerous other hydromagnetic cone flow studies including 

Sluyter and Touryan [21], Surma Devi et al [22] and also exhibits the correct physical response 
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for magnetohydrodynamic boundary layers as described by Cramer and Pai [38]. In figure 5  

NuxGrx
-1/4, is seen to be marginally decreased  with increasing Hax values, mainly in the vicinity 

of the leading edge. Increasing magnetic field will increase the Lorentzian drag force, 



F

Gr

Ha

x

x

2/1

2

, which causes the fluid to do supplementary work. This is manifested by an increase 

in thermal energy in the fluid which heats the flow and decreases heat transfer rates at the cone 

surface. We further note that with increasing distance from the leading edge, the   NuxGrx
-1/4, 

profiles all converge, a pattern sustained to the trailing edge. This indicates that magnetic field 

exerts no tangible effect after a certain  separation from the apex of the cone. A similar response 

has been identified by for example Singh et al [23] and for flat plate hydromagnetic convection, 

by Cramer and Pai [38]. Heat transfer gradient is therefore maximized for the non-conducting 

case and minimized for the strong magnetic field case. The latter is of immense potential 

therefore in magnetic field control of for example spacecraft re-entry surface heat transfer rates, 

in the vicinity of the nose. The electrically-conducting nature of plasma-type flows in re-entry 

problems and rarified gases in high altitude hypersonic heat transfer can therefore also be 

exploited to advantage with magnetic field control technology.  

Figures 6 and 7 illustrate the distribution of 
2

2
4/1 ]0,(










F
GrC xfx

 and 










)0,(
/

4/1 G
GrNu xx

 with various temperature power law index values (n) with streamwise 

coordinate, . This parameter arises frequently in both the momentum and energy boundary layer 

equations (24) and (25). The case, n = 0 implies isothermal flow. For n >0, the regime is non-

isothermal. With increasing n a steeper temperature  gradient arises at the cone surface. As a 

result skin friction (figure 6) is found to be strongly reduced at ( =0) and in close proximity (0< 

<2) to the cone apex. With further distance along the cone surface, all profiles are found to 

merge such that no significant effect of n on skin friction is experienced for  >3.   

Conversely, as expected, NuxGrx
-1/4 values (figure 7) are  enhanced at the leading edge ( = 0) 

with an increase in n. Maximum local Nusselt number function and therefore heat transfer rate 

arises for the strongly non-isothermal case (n = 0.9) and the minimum for the isothermal case (n = 

0). All profiles converge at  ~2, demonstrating very little response to n with further progress 

along the cone slant surface.  
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Figure 2: Skin friction versus streamwise coordinate for various Prandtl numbers (Pr) 
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Figure 3: Nusselt number function versus streamwise coordinate for various Prandtl numbers (Pr) 
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Figure 4 : Skin friction versus streamwise coordinate for various local Hartmann numbers (Hax) 
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Figure 5 : Nusselt number function versus streamwise coordinate for various local Hartmann 

numbers (Hax) 
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Figure 6 : Skin friction versus streamwise coordinate for various temperature power law index 

values (n) 
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Figure 7 : Local Nusselt number function versus streamwise coordinate for various temperature 

power law index values (n) 
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Figure 8 : Skin friction versus streamwise coordinate for various pressure work parameters () 
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Figure 9 : Local Nusselt number versus streamwise coordinate for various pressure work 

parameters () 
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Figure 10 : Skin friction versus streamwise coordinate for various Grashof numbers (Gr) 
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Figure 11 : Local Nusselt number function versus streamwise coordinate for various Grashof 

numbers (Gr) 
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Figure 12 : Velocity versus spanwise coordinate for various Grashof numbers (Gr) 
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Figure 13 : Temperature versus spanwise coordinate for various Grashof numbers (Gr) 
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Figure 14 : Skin friction  versus streamwise coordinate for collective effects of various local 

Hartmann numbers (Hax) and pressure work parameters () 
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Figure 15 : Local Nusselt number function versus streamwise coordinate for collective effects of 

various local Hartmann numbers (Hax) and pressure work parameters () 
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Figure 16: Skin friction versus streamwise coordinate for collective effects of various local 

Hartmann numbers (Hax) and temperature power law index parameters (n) 
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Figure 17: Local Nusselt number function versus streamwise coordinate for collective effects of 

various local Hartmann numbers (Hax) and temperature power law index parameters (n)  
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Figure 18 : Skin friction versus streamwise coordinate for collective effects of various pressure 

work parameters ()  and temperature power law index parameters (n)  
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Figure 19 : Local Nusselt number versus streamwise coordinate for collective effects of various 

pressure work parameters ()  and temperature power law index parameters (n) 
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Figures 8 and 9 illustrate the effect of pressure work parameters () on 
4/1

xfxGrC  and 

4/1

xxGrNu . Skin friction clearly decreases with a positive increase in  and increases with a 

negative increase in . The parameter 
pc

xg
   will aid the momentum boundary layer flow 

when negative, since pressure stress work will not dissipate energy of the flow. Conversely with 

positive   the pressure stress effect will expend energy. For  = 0 pressure (stress) work effects 

are neglected in the boundary layer physics. As a result the flow will be accelerated with negative 

 and decelerated with positive , which physically accounts for skin friction response shown in 

figure 8. The  parameter was also used by Joshi and Gebhart [40] and our results agree with 

their general findings.  Ackroyd earlier [41] also studied pressure stress work effects although for 

the much simpler case of flat plate convection, showing that pressure work effects are generally 

greater than viscous dissipation effects.  Figure 9 shows that local Nusselt number is increased 

i.e. heat transfer enhanced, with positive   and depressed with negative   principally near the 

cone apex. As we progress along the cone surface from the apex, the influence of   is 

consistently reduced, with profiles soon merging. Joshi and Gebhart [40] also showed that the 

pressure work parameter enhances heat transfer from surfaces for lower Prandtl numbers, as is 

apparent from figure 9 in our study. 

Figures 10-13 present the response of skin friction (
4/1

xfxGrC ), local Nusselt number 

(
4/1

xxGrNu ), velocity (F/) and temperature (G) to a change in local Grashof number (Grx). 

2

3][cos



 xTTg
Gr w

x


  and effectively this parameter simulates the relative effect of 

buoyancy force (free convection) to viscous force in the regime. With increasing Grx there is a 

distinct escalation in skin friction (figure 10) at the cone surface indicating that buoyancy forces 

aid the momentum development i.e. accelerate the flow. Maximum values of skin friction arise in 

all cases very close to the cone apex. Local Nusselt number function (figure 11) is also found to 

be enhanced slightly with a rise in Grx. The greatest influence occurs at the cone apex region with 

progressively less effect further along the cone surface. Increasing buoyancy therefore assists in 

enhancing cone surface heat transfer rate in the vicinity of the leading edge. Figure 12 in 

concurrence with figure 10 demonstrates that velocity is boosted considerably with increasing 

local Grashof number, since the elevation in buoyancy force serves to accelerate the flow both 

along the cone surface and into the boundary layer regime. A velocity peak close to the cone 

surface is observed at  ~ 1 and this peak migrates further from the wall (cone surface) with 
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increasing Grx. In figure 13 we observe that temperature, G, is diminished with increasing Grx 

throughout the boundary layer regime transverse to the cone surface. Since buoyancy forces 

enhance heat transfer rates (figure 11), greater heat quantities will be conducted from the fluid to 

the wall with increasing Grx which will serve to cool the boundary layer and induced a fall in 

temperatures. 

In figure 14 the combined influence of local Hartmann numbers (Hax) and pressure work 

parameters () on skin friction is plotted. It is interesting to note that the hydromagnetic drag 

force exerts a much more prominent effect than pressure work. With Hax = 0,  there is a clear 

separation in skin friction profiles, with the trend agreeing with figure  8 i.e.  skin friction is 

enhanced with negative  and decreased  with positive . Figure 8 was computed with Hax = 1,  

= 0,  n = 0.4, Grx = 10, Pr = 0.72. However with much stronger magnetic field in figure 14 than 

figure 8, i.e. Hax = 5.0, we observe that  while skin friction is clearly substantially lower than for 

the non-conducting case (Hax= 0), the influence of  is very small; infact the pressure work  effect 

is really only discernible near the cone apex. As such the  hydromagnetic effect is much more 

powerful than the pressure (stress) work effect in the present flow domain.  

Figure 15 shows the combined influence of local Hartmann numbers (Hax) and pressure work 

parameters () on local Nusselt number function. As in figure 9, NuxGrx
-1/4 is increased for 

positive   and lowered with negative   mainly near the cone leading edge (= 0). Also as found 

in figure 5, NuxGrx
-1/4, is slightly reduced with increasing Hax to 5.0- again the heat transfer rate at 

the cone surface is greater for the non-conducting case (Hax = 0), for any value of . 

Figures 16 and 17 show the composite effects of local Hartmann number (Hax) and temperature 

power law index parameters (n) on local Nusselt number function. The dominant effect of applied 

magnetic field i.e. local Hartmann number on skin fiction (figure 16) is apparent once again. The 

influence of n is clearly much less effective on the skin friction than applied magnetic field, the 

latter exerting as shown earlier in figure 8, a strongly inhibiting effect on flow whereas the former 

has a much weaker inhibiting effect. In figure 17, the beneficial influence on NuxGrx
-1/4 of 

increasing n is again evident as is the negative influence of local Hartmann number, the latter 

again serving to depress cone surface heat transfer rates.  

Finally in figures 18 and 19 we have plotted the collective effects of pressure work parameter () 

and  temperature power law index parameters (n) on skin friction and surface  heat transfer 

gradient (local Nusselt number).  Again we observe that skin friction  (figure 18) is greater for 

the isothermal case (as documented earlier) compared with the non-isothermal scenario, and that 

negative pressure work parameter enhances skin friction whereas positive values depress skin 

friction i.e. retard the flow.  The influence of n is clearly greater however than. Figure 19 
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confirms the counter-productive influence of negative  on NuxGrx
-1/4 and the enhancing influence 

of positive . Local heat transfer gradient NuxGrx
-1/4 is again shown to be boosted for the non-

isothermal case (n = 0.8) as compared with the isothermal case (n = 0).     

 

7. CONCLUSIONS  

A mathematical model has been presented for the laminar, magneto-convection gas boundary 

layer flow past a cone with variable surface temperature and pressure work effects. The velocity 

and thermal boundary layer equations have been non-dimensionalized using a pseudo-similarity 

transformation and a number of special cases of the general model described. NSM has been 

elected to solve the boundary value problem for a wide range of the governing parameters, with 

comparisons made against previous non-magnetic and non-transpiring conical flows. The effects 

of local Hartmann number, pressure work, thermal power-law exponent, local Grashof number 

and Prandtl number on skin friction and local Nusselt number distributions have been presented 

graphically and discussed in detail. The computations show that with increasing power law 

index (non-isothermal effect), skin friction at the cone is reduced whereas heat transfer 

rate is increased. Skin friction is elevated with negative pressure work parameter whereas 

it is reduced with positive values. Increasing local Hartmann number reduces cone 

surface heat transfer rates and also significantly decelerates the boundary layer flow i.e. 

reduces skin friction. With increasing local Grashof number i.e. stronger thermal 

buoyancy, skin friction is enhanced whereas temperatures are reduced. The study finds 

immediate applications in magneto-gas dynamic heat transfer in astronautics, materials 

processing and geophysical magneto-fluid dynamics. Currently the authors are extending this 

study with a finite element model [42-44] to include the effects of oblique magnetic field [45], 

Hall currents and magnetic induction [46]. Furthermore the use of surface injection of nanofluids 

to cool the cone surface [47] is being explored. In this regard an interesting extension to the 

current simulations is non-Newtonian nanofluid convection which has been addressed in detail by 

Prasannakumara et al. [48, 49] using various rheological constitutive models. These 

developments will also be investigated in the near future.  

 

8. ACKNOWLEDGEMENTS 

Dr. O. Anwar Bég is grateful to the late Dr. Howard Brenner, formerly Willard Dow Professor of 

Chemical Engineering at MIT, USA for providing some excellent guidance on pressure work and 



 29   

 

dissipation fluid mechanics aspects. All the authors are also grateful to the reviewers for their 

constructive comments which have served to improve the present investigation.  

 

REFERENCES 

[1] Witte, A.B. and Harper, E.Y., Experimental investigation and empirical correlation of local 

heat transfer rates in rocket-engine thrust chambers, Tech. Report 32-344, Jet Propulsion 

Laboratory, California Institute of Technology, Pasadena, California, March (1962).   

[2] Medford, J.E., Transient radial heat transfer in uncooled rocket nozzles, Aerospace 

Engineering, 21, 10, 15-21 (1962) 

[3] Chamkha, A.J. and M. A. Quadri, Combined heat and mass transfer by hydromagnetic natural 

convection over a cone embedded in a non-Darcian porous medium with heat 

generation/absorption effects, Heat and Mass Transfer, 38, 487-495 (2002). 

[4] Bartz, D.R., A simple equation for rapid estimation of rocket nozzle convective heat transfer 

coefficients, Jet Propulsion, 37, 1, 49-51 (1957). 

[5] Streif, M. L., Heat transfer to a cone segment model, General Dynamics and Astronautics, 

Report, San Diego, California, July (1960). 

[6] Braun, W.H., Ostrach, S., Heighway, J.E., Free convection similarity flows about two-

dimensional and axisymmetric bodies with closed lower ends, Int. J. Heat Mass Transfer, 21, 1-2, 

121-135 (1961). 

[7] Hering, R.G. and Grosh, R.J., Laminar free convection from a non-isothermal cone, Int. J. 

Heat Mass Transfer, 5, 11, 1059-1068 (1962).  

[8] Hering, R.G., Laminar free convection from a non-isothermal cone at low Prandtl numbers, 

Int. J. Heat Mass Transfer, 8, 10, 1333-1337 (1965). 

[9] Roy, S., Free convection over a slender vertical cone at high Prandtl numbers, ASME J. Heat 

Transfer, 96, 1-4, 174-176 (1974). 

[10] Na, T.Y. and Chiou, J. P., Laminar natural convection over a slender vertical frustrum of a 

cone, Heat Mass Transfer, 12, 2, 83-87 (1979). 

[11] Lin, F.N., Laminar free convection from a vertical cone with uniform surface heat flux, 

Letters in Heat and Mass Transfer, 3, 1, 49-58 (1976). 

[12] Alamgir, M., Overall heat transfer from vertical cones in laminar free convection: an 

approximate method,   ASME J. Heat Transfer, 101, 1-4, 174-176 (1979). 

[13] Pop, I. and Takhar, H.S.: Compressibility effects in laminar free convection from a vertical 

cone.  Applied Scientific Research, 48, 71- 82 (1991). 



 30   

 

[14] Hossain, M.A. Munir, M.S. and Takhar, H.S.:  Natural convection flow of a viscous fluid 

about a truncated cone with temperature dependent viscosity. Acta Mechanica. 140, 171-181 

(2000). 

[15] Hossain, M.A. and Paul, S.C., Free convection from a vertical permeable cone with non-

uniform surface temperature, Acta Mechanica, 151, 1-2, 103-114 (2001). 

[16] Takhar, H.S., A.J. Chamkha and G. Nath, Effect of variable thermophysical quantities on the 

natural convection flow of gases over a vertical cone, Int. J. Engineering Science, 42, 243-256 

(2003). 

[17] Chamkha, A.J., H.S. Takhar and G. Nath, Unsteady compressible boundary layer flow over a 

circular cone near a plane of symmetry, Heat and Mass Transfer, 41,  632-641 (2005).     

[18] Roy, S., Datta, P. and Mahanti, N.C., Non-similar solution of an unsteady mixed convection 

flow over a vertical cone with suction/injection,  Int. J. Heat Mass Transfer, 50, 1-2, 181-187 

(2007).  

[19] Singh, P.J. and S. Roy, Unsteady mixed convection flow over a vertical cone due to 

impulsive motion, Int. J. Heat and Mass Transfer, 50, 5/6, 949-959 (2007).  

[20] Kumari, M. and Nath, G., Transient laminar compressible boundary layers over a permeable 

circular cone near a plane of symmetry, Int. J. Heat  Mass Transfer, 48, 13, 2771-2778 (2005).  

[21] Sluyter, M. M. and Touryan, K. J., The effect of a magnetic field on a rotating cone in 

compressible flow, Sandia National Labs Report, New Mexico, USA , AIAA-1969-721 (1969). 

[22] Surma Devi, C.D., Takhar. H.S. and Nath, G., MHD flow past a cone, Acta Technica Csav, 

31, 400-409 (1986). 

[23] Singh, S.N., Takhar. H.S. Int. J. Ram, P.C.: Magnetohydrodynamic flow between coaxial 

rotating cone and a cylinder under the influence of radial a magnetic field. J.  

Magnetohydrodynamics and Plasma Research, 6, 21-32 (1996).  

[24] Chamkha, A.J., Non-Darcy hydromagnetic free convection from a cone and a wedge in 

porous media, Int. Comm. Heat and Mass Transfer, 23, 875-887 (1996). 

[25] Chamkha, A.J., A.-R.A. Khalid and O. Al-Hawaj, Simultaneous heat and mass transfer by 

natural convection from a cone and a wedge in porous media, J. Porous Media, 3, 155-164, 

(2000). 

[26] Chamkha, A.J., Coupled heat and mass transfer by natural convection about a truncated cone 

in the presence of magnetic field and radiation effects, Numerical Heat Transfer, Part A, 39, pp. 

511-530 (2001). 

http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235731%232007%23999499994%23643580%23FLA%23&_cdi=5731&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c1fb56bd5850a8f3768e883da9c506b0
http://www.sciencedirect.com/science/journal/00179310


 31   

 

[27] Chamkha, A.J. and A. Al-Mudhaf, Unsteady heat and mass transfer from a rotating vertical 

cone with a magnetic field and heat generation or absorption effects, Int. J. Thermal Sciences, 

Volume 44, pp. 267-276, 2005. 

[28] Alam, M. M., Alim, M. A. and Chowdhury, M. M. K., Free convection from a vertical 

permeable circular cone with pressure work and non-uniform surface temperature, Nonlinear 

Analysis: Modelling and Control, 12, 1, 21-32 (2007). 

[29] Gebhart, B., Effects of viscous dissipation in natural convection, J. Fluid Mechanics, 14, 2, 

225-232 (1962). 

[30] Takhar, H.S. and Soundalgekar, V.M.: Effects of viscous dissipation and stress work on heat 

transfer in a boundary layer flow past a semi-infinite horizontal flat plate. “L” Aerotechnica 

Missili E. Spazio.  56, 210-212 (1978). 

[31] Soundalgekar, V.M., Takhar. H.S. and Vignesam, N.V.: Combined free and forced 

convection flow past a semi-infinite vertical plate with variable surface temperature. Nuclear 

Engineering and Design.  110, 95-98 (1988). 

[32] Soundalgekar, V.M., Murty, T.V.R. and Takhar, H.S.: Heat transfer in MHD unsteady 

stagnation point flow with a variable temperature. Indian J. Pure and Applied Math. 21, 384-389 

(1990). 

[33] Ganesan,P., Ekambavanan, K., Soundalgekar, V.M. and Takhar, H.S.: Transient free 

convection past a semi-infinite vertical plate with variable surface temperature. Int. J. Num. Meth. 

Heat and Fluid Flow, 7, 186-202 (1997). 

[34] Landau, L.D. and Lifschitz, E., Electrodynamics of Continuous Media, International Course 

in Theoretical Physics, Pergamon, Oxford (1959). 

[35] Bég, O. Anwar, J. Zueco, R. Bhargava, H.S. Takhar, Magnetohydrodynamic convection flow 

from a sphere to a non-Darcian porous medium with heat generation or absorption effects: 

network simulation, Int. J. Thermal Sciences, 48, 5, 913-921 (2009).  

[36] Bég, O. Anwar, J. Zueco, M. Norouzi, M. Davoodi, A. A. Joneidi, Assma F. Elsayed, 

Network and Nakamura tridiagonal computational simulation of electrically-conducting 

biopolymer micro-morphic transport phenomena, Computers in Biology and Medicine, 44, 44–56 

(2014). 

[37] Pspice 6.0. (1994) Irvine, California 92718. Microsim Corporation, 20 Fairbanks 

[38] Cramer, K.C. and Pai, S.I., Magnetofluid Dynamics for Engineers and Applied Physicists, 

MacGraw-Hill, New York (1973). 



 32   

 

[39] Hill, P.G. and Peterson, C.R., Mechanics and Thermodynamics of Propulsion, Addison-

Wesley Series in Aerospace Science, H.W. Emmons and S.S. Penner (Editors), Reading, 

Massachusetts, USA, 2nd  edition  (1967).  

[40] Joshi, Y. and Gebhart, B., Effect of pressure stress work and viscous dissipation in some 

natural convection flows, Int. J. Heat and Mass Transfer, 24, 1577-1588  (1981). 

[41] Ackroyd,  J.A.D., Stress work effects in laminar flat-plate natural convection, J. Fluid 

Mechanics, 62, 677-695  (1974). 

[42] S. Rawat, R. Bhargava, Renu Bhargava and O. Anwar Bég, Transient magneto-micropolar  

free convection heat and mass transfer through a non-Darcy porous medium channel with 

variable thermal conductivity and heat source effects, Proc.IMechE Part C- J. Mechanical 

Engineering Science, 223, 2341-2355 (2009). 

[43] R. Bhargava, S. Sharma, O. Anwar Bég and Zueco, J, Finite element study of nonlinear two-

dimensional deoxygenated biomagnetic micropolar flow, Comm. Nonlinear Science and 

Numerical Simulation, 15, 1210-1233 (2010). 

[44] Puneet Rana, R. Bhargava and O.Anwar Bég, Numerical solution for mixed convection 

boundary layer flow of a nanofluid along an inclined plate embedded in a porous medium, 

Computers and Mathematics with Applications, 64, 2816-2832 (2012).  

[45] O. Anwar Bég, S.K. Ghosh and M. Narahari,  Mathematical modelling of oscillatory MHD 

Couette flow in a  rotating highly permeable medium permeated by an oblique magnetic field, 

Chemical Engineering Communications, 198, 235-254 (2010). 

[46] S K. Ghosh, O. Anwar Bég and A. Aziz, A mathematical model for magnetohydrodynamic 

convection flow in a rotating horizontal channel with inclined magnetic field, magnetic induction 

and Hall current effects, World J. Mechanics,1, 137-154  (2011).  

[47] O. Anwar Bég and D. Tripathi Mathematica simulation of peristaltic pumping with double-

diffusive convection in nanofluids: a bio-nano-engineering model, Proc. IMechE Part N - J. 

Nanoengineering and Nanosystems, 225, 99–114 (2012). 

[48] B. C. Prasannakumara, M. R. Krishnamurthy, B. J. Gireesha, and Rama S. R. Gorla, Effect 

of multiple slips and thermal radiation on MHD flow of Jeffery nanofluid with heat transfer, J. 

Nanofluids, 5, 82-93 (2016). 

[49] Prasannakumara, B., Gireesha, B., Gorla, R., and Krishnamurthy, M., Effects of chemical 

reaction and nonlinear thermal radiation on Williamson nanofluid slip flow over a stretching 

sheet embedded in a porous medium, ASCE J. Aerospace Engineering (2016). 

10.1061/(ASCE)AS.1943-5525.0000578, 04016019. 

http://www.sciencedirect.com/science/journal/00179310
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235731%231981%23999759989%23397928%23FLP%23&_cdi=5731&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=a2708a3615018cd1e138a371cbfbed23

