Oscillatory oseenlets

Elmazuzi, RAH 2011, Oscillatory oseenlets , PhD thesis, University of Salford.

Download (1MB) | Preview


Consider uniform flow past an oscillating body. Assume that the resulting far-field flow consists of both steady and time periodic components. The time periodic component can be decomposed into a Fourier expansion series of time harmonic terms. The form of the steady terms given by the steady oseenlets are well-known. However, the time-harmonic terms given by the oscillatory oseenlets are not. In particular, the Green's functions associated with these terms are presented. In this thesis, the oscillatory oseenlet solution is presented for the velocity and pressure, and the forces generated by them are calculated. A physical interpretation is given so that the consequences for moving oscillating bodies can be determined. As the frequency of the oscillations tend to zero, it is shown that the steady oseenlet solution is recovered. Also, as the Reynolds number of the flow tends to zero, it is shown that the oscillatory stokeslet solution is recovered. In this latter case, the oscillatory oseenlets solution is an outer matching to the inner oscillatory stokeslet solution. An application of this new representation is discussed for future work.

Item Type: Thesis (PhD)
Schools: Schools > School of Computing, Science and Engineering > Salford Innovation Research Centre
Funders: Libyan Education
Depositing User: CW Gates
Date Deposited: 05 Jun 2017 12:01
Last Modified: 27 Aug 2021 20:29
URI: https://usir.salford.ac.uk/id/eprint/39433

Actions (login required)

Edit record (repository staff only) Edit record (repository staff only)