Numerical study of slip effects on unsteady aysmmetric bioconvective nanofluid flow in a porous microchannel with an expanding/ contracting upper wall using Buongiorno’s model

Beg, OA ORCID: https://orcid.org/0000-0001-5925-6711, Basir, MFM, Uddin, MJ and Ismail, AIM 2016, 'Numerical study of slip effects on unsteady aysmmetric bioconvective nanofluid flow in a porous microchannel with an expanding/ contracting upper wall using Buongiorno’s model' , Journal of Mechanics in Medicine and Biology, 17 (3) , p. 1750059.

[img]
Preview
PDF - Accepted Version
Download (1MB) | Preview

Abstract

In this paper, the unsteady fully developed forced convective flow of viscous incompressible biofluid that contains both nanoparticles and gyrotactic microorganisms in a horizontal micro-channel is studied. Buongiorno’s model is employed. The upper channel wall is either expanding or contracting and permeable and the lower wall is static and impermeable. The plate separation is therefore a function of time. Velocity, temperature, nano-particle species (mass) and motile micro-organism slip effects are taken into account at the upper wall. By using the appropriate similarity transformation for the velocity, temperature, nanoparticle volume fraction and motile microorganism density, the governing partial differential conservation equations are reduced to a set of similarity ordinary differential equations. These equations under prescribed boundary conditions are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order numerical quadrature in the MAPLE symbolic software. Excellent agreement between the present computations and solutions available in the literature (for special cases) is achieved. The key thermofluid parameters emerging are identified as Reynolds number, wall expansion ratio, Prandtl number, Brownian motion parameter, thermophoresis parameter, Lewis number, bioconvection Lewis number and bioconvection Péclet number. The influence of all these parameters on flow velocity, temperature, nano-particle volume fraction (concentration) and motile micro-organism density function is elaborated. Furthermore graphical solutions are included for skin friction, wall heat transfer rate, nano-particle mass transfer rate and micro-organism transfer rate. Increasing expansion ratio is observed to enhance temperatures and motile micro-organism density. Both nanoparticle volume fraction and microorganism increases with an increase in momentum slip. The dimensionless temperature and microorganism increases as wall expansion increases. Applications of the study arise in advanced nanomechanical bioconvection energy conversion devices, bio-nano-coolant deployment systems etc.

Item Type: Article
Schools: Schools > School of Computing, Science and Engineering
Journal or Publication Title: Journal of Mechanics in Medicine and Biology
Publisher: World Scientific Publishing
ISSN: 0219-5194
Related URLs:
Funders: Universiti Sains Malaysia
Depositing User: OA Beg
Date Deposited: 14 Sep 2016 08:12
Last Modified: 15 Feb 2022 21:11
URI: https://usir.salford.ac.uk/id/eprint/40100

Actions (login required)

Edit record (repository staff only) Edit record (repository staff only)

Downloads

Downloads per month over past year