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ABSTRACT

Sheet processing of magnetic nanomaterials is emerging as a newhbod smart materials
manufacturing. The efficient production of such materials combines many physical phenomena
including magnetohydrodynamics (MHD), nanoscale, thermal and mass diffusion effects. To
improve understanding of complex intisciplinary transport phenomena in such systems,
mathematical models provide a robust approach. Motivated by this, herein we develop a
mathematical model for steady, laminar, magnetohydrodynamiompressiblenanofluid flow,

heat and mass transfer from siretching sket. A uniform conant strength magnetic field is
applied transverse to the plane of the stretching flow. The Buonjiornio nanofluid model is employed
to represent thermophoretic and Brownian motion effe8tsnonFourier (CattaneeChristov)

model is deplged to simulate thermal conduction effects of which the Fourier model is a special
case when thermal relaxation effects are neglected. The governing conservation equations are
rendered dimensionless with suitable scaling transformations. The emergingeaortioundary

value problem isolved with a fourth order Rungéutta algorithm and also shooting quadrature.
Validation is achieved with earlier nemagnetic and forced convection flow studies. The influence

of key thermophysical parameters e.g. Hartmanagnetic number, thermal Grashof number,
thermal relaxation time parameter, Schmidt number, thermophoresis parameter, Prandtl number
and Brownian motion number on velocity, skin friction, temperature, Nusselt number, Sherwood
number and nanarticle conentration distributions is investigated. A strong elevation in
temperature accompanies an increase in Brownian motion parameter whereas increasing magnetic
parameter is found to reduce heat transfer rate at the wall (Nusselt number)psgiobe volume
fraction is observed to be strongly suppressed with greater thermal Grashof number, Schmidt
number and thermophoresis parameter whereas it is elevated significantly with greater Brownian
motion parameter. Higher temperatures are achieved with greater theetaxation time values

i.e. the norFourier model predicts greater values for temperature than the classical Fourier model.

*Corresponding Author

KEY WORDS: NonFourier conduction; magnetic nanofluidspbndary layer flow;stretching
sheet; Browniammotion; thermophoresis.



NOMENCLATURE

C nancparticle (solutal) concentration q heat flux

C, nhanoparticle (solute)concentration at the wall G; Thermal Grashof number

C, ambientnanoparticle concentration as y tends to infinity | 9 Acceleration due to gravity
D; Brownian diffusion coefficient ¢ thermal relaxation time

D; Thermophoretic diffusion coefficient B Solutal Grashof number

By magnitude of magnetic fiektrength Kinematic viscosity of the fluid
T Local fluid temperature P Prandtl number

T. Ambient temperature M Hartmann Number

u,Vv Velocity components along x and y directions N, Brownian motion parameter
P pressure Sc Schmidt numbef= PrLe)

/ Nanoparticle volume fraction Re, Local Reynoldsnumber

kK Similarity variable(transformed coordinate) Dynamicviscosity ohanofuid
Nu,  LocalNusselt number Le Regular Lewis number

SH Local nanoparticle Sherwood number

X,y Coordinate along and normal to the

sheet

@ , Effective heat capacity of the nanoparticle material

@

Heat capacity of the fluid

Dimensionless temperature

Nt Thermophoresis parameters

J nondimensional thermal relaxation time

K Thermal conductity of the fluid

1. INTRODUCTION

Nanoparticles provide a briddeetween bulk materials and molecular structiken deployed
VWUDWHJILFDOO\ LQ EDVH IOXLGV WKH UHVXOWLQJ 3QDQRIC

enhancement in thermal coradivity properties, as identified by Choi [1]. This has made them



attractive in numerous areas mbdern technology including aerospammmling systemg2], heat
exchangers [3] and energy systems [4]. When developing customized nanofluids for deployment in
such applications, manufacturing processes exert a key influence on the constitution of final
products. In materials processing a popular mechanism employed is tleantofuous sheet
stretching The mathematical study of such flows was mobilized averdecades ago by Sakiadis
who considered Newtonian flows from continuously moving surfaces [5]. This type of flow is
particularly suitable to being simulated whbundary layer theoryMany subsequent studies have
appeared examining heat and mass teansf stretching boundary layer flows including Takkar

al. [6], Gorlaet al.[7] and Hayatt al [8]. More recently nanofluid stretching boundary layer flows
have also been considered and representative works include étddir{9], Ranaand Bhargava

[10], Nadeemet al [11] andRanaet al. [12]. The two most popular approaches in simulating
nanofluid boundary layer transport phenomena are eithéBubajiornio modelwhich invokes a
separate species concentration boundary layer equation) affdwdue-Das model (which only
requires momentum and energy boundary layer equations and simulatgsartasie effects via a
volume fraction parameter). Many researchers have utilized these approaches includirandield
Kuznetsov{13], Rashidiet al.[14], Latiff et al. [15] andFerdowset al.[16]. The vast majority of

such studies have considered the classical Fourier model for thermal conduction heat transfer.
However it has been identified that this model may not be accurate for certain situations as it
produces garabolic energy equatiowhich implies that any initial thermal disturbance is instantly
experienced by the medium under examinatiédnmodification to the Fourier law is therefore
necessitated and in this regard a robust model which has bmsrsed is theCattaneeChristov
non-Fourier model[17-19]. This features &elaxation time for heat fluand results in &yperbolic
energyequationwhich successfully captures the flux of heatpiapagation of thermalaves with

finite speedlt is relevant to not only materials processing operations [20] but alsbdabtransfer

[21]. A number of excellent studies have appeared recently employir@atteneeChristov non

Fourier modelincluding Mustafa [22] who studied rotating viscoelastic heasfearand also Hayat

et al.[23] who investigatednelting in stretching sheet flow of a nrdlewtonian fluid.
Magnetohydrodynamics (MHD) is the study of the interaction of magnetic fields (which may be
static or oscillating) and electricaljonducting fluds. It is a subject of immense industrial
importance in for example metallurgical processing and induction furnaces [24]. MHD also has
significant emerging applications in biomagnetic flow control [25], Marangoni convection in
biophysical suspensions [26lemodynamics [27] and pharmadgnamics [28]. In this latter area it

has also been exploited in targeted drug delivery where-paicles are coated in magnetic



materials to assist in their directability in the human circulatory system. Furthermouvel@am
engineering systems, [29] magnetic nanofluids are also being examined, since they combine both
the thermal enhancement properties of nanofluids with the magnetic manipulation properties of
electricallyconducting liquids. The former can assist indaample cooling very high temperature
surfaces and the latter permit manipulation of flow rates and also heat transfer characteristics [30].
It is therefore beneficial to investigate the thermofluid dynamics of magnetic nanofluid sheet
processing as thiprovides further insight into the heat transfer, mass transfer and momentum
characteristics of nanomaterials. The investigation offfmurier heat conduction phenomena also
gives a more realistic appraisal of thermechanics of nanofluids [31] which méwe exploited
strategically in reducing heat transfer rates of nuclear power technologies (both for civilian and
future aerospace propulsion). Such analyses may also be of use in minimizirgeatweg of

hybrid deepspace rocket propulsion systems [32].

In the present study we therefore examine theoretically, for the first timestehdy, laminar,
magnetohydrodynamic, incompressible nanofluid flow, heat and mass diffusion from a stretching
sheet, as a model of magnetic nanomaterials fabrication. W t@oBuonjiornio nanofluid model

[33] which emphasizes thermophoretic and Brownian motion effects and introduces a separate
nanoeparticle species diffusion equation. The Catta@boistov norFourier thermal conduction
model is also applied [34], whichtroduces a thermal relaxation effect. The normalizedlimear
two-point boundary value problem is solved with numerical shooting quadrature. Validation with
SUHYLRXV VWXGLHV LV LQFOXGHG 7KH FXUUHQW VWheG\ KD\
literature thusfar.

2. MATHEMATICAL FLOW MODEL

The regime under investigation is illustratedrig. 1. Two-dimensional, steadgtate, incompressible
flow of an electricallyconducting nanofluid from a vertical stretching sheet is considered, with
reference to arx(y) coordinate system, where thexis is aligned with the sheet. A transverse static
uniform strength magnetic field is applied, which is sufficiently weak to negate magnetic induction
and Hall current effects. The nanofluid is dilutela@omprises a homogenous suspension of equally

sized nanoparticles in thermal equilibrium [35]. The sheet is stretched in theypl@nd&he flow is
assumed to be confinedyo! 0. Here we assumed that the shisetniformly extended with the linear
velocityu(x) ax, wherea !0 is constant and-axis is measured along the stretching surface. Under

these assumptions, the governing conservation equations for mass, monegtgy, (heat) and



nanoeparticle species diffusion, neglecting viscous and Joule dissipation effects, may be shown to
take the form:
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Fig.1. Physical model fothe magnebhydrodynamiaanofluid stretching sheptoblem.
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Here w 7 P is the ratio of the effective heat capacity of the npadicles to the base fluid
f

andv are thevelocity components alonpe x andy-directions respectivelyl is the temperature of
themagnetic nanituid, By is the magnitude of magnetic fiektirength q is the heat fluxin Eq. (3)
we employ theCattaneaChristovthermal conductiomodelfor heatflux, which has the following

form:
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Here Qis thethermal relaxation timeEliminatingq from Ems. (3) and 6), the modified energy

conservation equation then assumes the form:
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HereT is the nanofluid temperaturB,is the pressure and the other physical quangtiedefinedn

the nomenclatureWe note that wheng o 0, the thermal relaxation effect is negated and the

CattaneaChristov thermal conductio model reduces to thelassical Fourier conduction law
Essentially therefore the presence of thermal relaxation makemn#igy conservation equation a

nontFourier model. The boundary conditions apeescribed as follows:

uu x a v O T T, C C, aty=0. (8)
uoO voO ToT,, CoC,, asyo f. (9)

To facilitate numerical solutions to the primitive boundary value problem, it is pertinent to

introduce the following similarity transformations and dimensionless variables:

u afck,v JaoQf K K /%y, rk LT &G (10)

T, T C, Ci’
Implementing egn. (9) in the conservation egns. (1), (2), (4) and (6), the following nonlinear,

coupled system of se#fimilar ordinary differential equatiorsmergs:

fe(fy ffeM?’fcG 7B ) O (11)

L et N, TgC N, TE  Jff 0 £2Te O, (12)
Pr

/ccScf/ Jsl':l'LT og (13)

b



The transformedoundary conditionassume the fon:
fo O f@®©® 1, 70 1 /0 1 (13a)

fcf O 7f O /f O (13b)

where pimes denote differentiation with respect kd.e. the transformed transverse coordinate

Furthermore the following dimensionless numbers are invoked in egng1@)0)

2 |B02 uw X X (gXS ETW Tf GT
M ’ X ’ ’ Gr o
T 0 G, 3 R,
Q o 4 wT, T -
Pr —< N, . N, , Sc=PrLe J a@g, 14
r 5 o 2 G (14)
ngB g Cw Cf B BT
o Q R/

These represent respectively the square of HhEmann magnetic body force numbdocal
Reynoldsnumber, thermal Grashof numbératio of thermal buoyancy forcéo viscous force
thermal buoyancy ratio parameter, Prandtl number, Brownian motion parameter, thermophoresis
parameter, Schmidt number, thexhnelaxation parameter, solutal (species) Grashof nungtsgro
of concentration buoyancy forceo viscous forcg and species buoyancy ratiparameter
Expressions for the skin friction coefficiefwall shear stress functignpcal Nusselt numbgmvall
heat transfer rategnd the local Sherwood numb@vall naneparticle mass transfer ratejay also

be defined as follows:

c, W onu XN gp X (15)
u, U, T) ac, C)

w Y g O g, X (16
oW i oW i oW 1

Re"’?’C, fca ,Re "’Nu, 7¢O, Re, ésn( /0, (17

It is important to note that ¢hpresenboundary value problem reduces to the classical problem of
magnetohydrodynamifiow, and heat and mass transfer due to a stretching surface in a viscous
fluid whenNb andNt o 0 neglecting nanoscale effecis, Egns. (L0) and (11). Furthermore the
nonFourier model contracts to the classical Fourier model whenO i.e.thermal relaxation time
effects vanish. The functions defined in egns. (18)7) provide an important estimate of thall

heat and mass transfer characteristics which are useful in materials processing design.



3.NUMERICAL SOLUTIONS OF TRANSFORMED EQUATIONS AND VALIDATION

The nonlinear ordinary differential equatiod$)-(12) subject to the boundary conditions3 have
been solve numerically using an efficient Rudgetta fourth order method along withshooting
technique. The asymptotic boundary conditions given by B).wére replaced by using a value of

15 for the similaty variableX,, . The choice ofK, 15 and the stegize K 0.001, ensured

that all numerical solutions approached the asymptotic values correctly. For walidhtihe
proposed scheme, a coatjzon for the Nusselt number with the literatu36,[37 has been shown

in Table 1, for the magnetohydrodynamic case without thermal buoyancy. Furthermore additional
benchmarking of solutions has been documentedaiple 2 with nonmagnetic, Fouriemodd

based solutions given earlier in [88]. Very good correlation is achieved for all values of
Hartmann numberM) in Table 1 and for all Prandtl numberdX) in Table 2 with published

solutions.

Table 1 Comparison of results for skin friction fo6( 0).

M Present Salahuddiret al. Akbaret al.
results [36] [37]
0.0 1 1 1
0.5 -1.11803 -1.11801 -1.11803
1 -1.41421 -1.41418 -1.41421
5 -2.44949 -2.44942 -2.44949
10 -3.31663 -3.31656 -3.31663
100 -10.04988 -10.04981 -10.04988
500 -22.38303 -22.38393 -22.38303
1000 -31.63859 -31.63846 -31.63859
Table 2 Comparison of results for Nusselt numbefor pure fluid i.e,
Nt Nb OwithM O0,J OandG, O.
Pr Present Khanetal | Khan & Pop Wang Kandasamyet al.
results [38] [39] [40] [47]
0.07 0.0663 0.0663 0.0663 0.0656 0.0661
0.20 0.1691 0.1691 0.1691 0.1691 0.1691
0.70 0.4539 0.4539 0.4539 0.4539 0.4542
2 0.9114 0.9114 0.9113 0.9114 0.9114
7 1.8954 1.8954 1.8954 1.8954 1.8952




20 3.3539 3.3539 3.3539 3.3539 --
70 6.4622 6.4622 6.4621 6.4622 -

In these Tables, skin friction is shown to decrease significantly with grihteslue whereas

Nusselt number is observed to be consistently elevat#lad greater Pr value (which is a
thermophysical property of a particular fluid). The former is attributable to the decelerating effect of
magnetic field via the Lorentzian magnetohydrodynamic drag. The latter is caused by the decrease
in thermal conductity of fluids with greater Prandtl number which enhances heat transfer to the
wall, reduces temperatures in the body of the fluid and thereby elevates Nusseit. Aumakefore,

we are confident that the applied numerical scheme is very accurate.

4. RESULTS AND DISCUSSION

Extensive numerical computations have been conducted. The results are depkagsi2i# in
which the influence of selected parameters on momentum, heat, and mass transfer characteristics

are presented graphically.

Nb =Nt =0.5, Sc =10, J=0.05, Pr=3.97

M=0

RN BN SR BN BRI S|
1 2 3 4 5 6
K

o

Fig. 2. Velocity profile for different values ahermal buoyancy ratid3;) and Hartmann number

(M).

Evidently a significant acceleration accompanies an increase in thermal buoyanc@atsinte
thermal buoyancy (free convection current) effect aids in momeuitfosion in the boundary
layer.Gr in fact defines the ratio of thermal Grashof number to the square of Reynolds number and
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invokes therefore not just thermal buoyancy faand viscous force but also inertial forddis has

been emphasized in many sealiworks in buoyancdriven flows, notably by Gebhaet al [42].

It has also been observed in other studies of nanofluid dynamics, for exampletGr[43] and
Nadeemet al [44]. Thermal buoyancgncourages flow but reduces the momentum boundsey |
thicknesslit is therefore a primary mechanism used in materials processing operations to generate
greater momentum fluxConversely increasing Hartmann number, which symbolizes the relative
contribution ofLorentzian magnetohydrodynamic drag fotoeriscous hydrodynamic forceesults

in a strong deceleration in nanofluid boundary layer flow. The velocity is therefore markedly
decreased with great®ét value and the momentum boundary layer thickness is increbisisdhas

also been observed in othéndies of magnetic nanofluid boundary layers, including [45].

Fig. 3. Temperature profik for different values of (a). Hartmann numbék) and thermal
buoyancy ratio @) (b). Brownian motion paramete(N,) and thermophoresis panater {\;). (c)

thermal relaxation timé J) and Prandtl numbeP¢).

Fig. 4. Nanoparticle volume fractio(species concentration) profilésr different values of (a).
thermalbuoyancy ratio G;) and Schmidt numbeiSQ. (b). Brownan motion parametgrN, ) and

thermophoresis parametét) (c) thermal relaxation time §) and Prandtl numbeP().
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Fig. 5. Skin friction coefficient for different values of Hartmann num@é) and thermal bugancy
ratio (Gy).

Figs. 6. Nusselt number for different values of fa@n-dimensional thermal relaxation timeJ),
Hartmann numberM) and thermal buoyancy ratids().(b) Brownian motion parametemNp),
Thermophoresis paramet@t) and thermal buoyancy rati®). (c). Schmidt numbe¢Sqg, Prandtl
number (Pr) and thermal buoyancy rat®)(

Fig. 7. Local Sherwoodhumber for different values ¢&) non-dimensional thermal relaxation time
( v), Hartmann numdér (M) and thermal buoyancy rati6).(b) Brownian motion parameteNp),
Thermophoresis parametéit] and thermal buoyancy rati&(). (c). Schmidt numbelSg, Prandtl
number (Pr) and thermal buoyancy rat®)(
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The asymptotically smooth profiles coatpd in fig. 2 also testify to the selection of an adequately
large infinity boundary condition. Velocity profiles descend sharply from the sheet surface
indicating that there is a deceleration in the nanofluid flow for relatively short migration into the
thickness of the boundary layer. The weak nature of the magnetic Kield (s the maximum
Hartmann number studied and corresponds to the Lorentzian force being double the viscous force)
manifests in a distinct absence of any velocity overshoot at otheearall. A similar response has

been reported by Uddet al. [46] also for magnetized nanofluids.

Figs 3ac illustrate the collective effects of several key parameters on temperature distribution,
[ A. Evidently in fig. 3a a marked enhancement in teipee accompanies a rise in Hartmann
number. The supplementary work expended in dragging the nanofluid against the imposed
transverse magnetic field is dissipated as thermal energy. This results in a heating of the nanofluid
regime and increase in thernmmmundary layer thickness. Indeed this effect has been computed by
numerous researchers for both viscous conducting and nasefiéid for example Sutton and
Sherman [47] andMustafaet al [48]. With increasing thermal buoyancy ratio however there is a
dight depletion in temperatures. Thermal buoyancy force is known to cool boundary layer flows
while simultaneously accelerating them, as emphasized by Geblarf42]. In fig. 3b we observe

that an increase in Brownian motion parametsb)(strongly eévates temperatures. Larger
magnitudes ofNb physically corresponds to smaller particles and vice versa for smaller values of
Nb. Smaller particles are able to enhance thermal conduction in the nanoscale and this globally
results in increase in the bulkmeerature of the fluid, as highlighted by Choi [1] and later by
Buonjiornio [33]. Although other mechanisms may contribute to thermal conductivity enhancement
such as ballistic collisions and maaronvection, one of the dominant mechanisms (certainly for
laminar flows) is now believed to be Brownian motion. The influence of the other key mechanisms,
namely thermophoresis, is also depicted in fig. 3b. Greater values of thermophoresis pakneter (
are also observed to elevate temperatures and therefoease thermal boundary layer thickness.
Thermophoresis encourages nanoparticle transport away from a hotter surface towards a colder
zone. This results in transport of thermal energy into the body of nanofluid and thereby increases
temperaturesWith increasing Prandtl numbeP¥X), there is a significant reduction in temperature,

as shown in fig. 3b. We considBr >1 implying that momentum diffusivity greatly exceeds the
thermal diffusivity in the fluid. For greatd?r values, thermal conductivity in tHeid must also
decrease and this explains the decrease in temperatieaasends from 3.97 to 6.2. Thermal
boundary layer thickness will therefore also be reduced in the nanofluid sheet regime. With

increasing thermal relaxation parametey the nandiid temperature is noticeably elevated.
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Therefore the Fourier modelf(evidently undespredicts nanofluid temperatures, whereas the non
Fourier model (/>0) produces greater magnitudes of temperature. The implications for materials
processing is that aelter estimate of actual temperatures can be achieved with theonaer
(CattaneeChristoy) model via a relative simple modification of the heat conduction model. This
may have an impact on better designing nanomaterials for specific applications.

Figs 4a-c illustrate the combined effects of a number of thermophysical parameters on the nano
particle volume fraction (species concentratiod)A, in the boundary layer. An increase in
Schmidt number§q as displayed in fig. 4a clearly enhancesnhraoeparticle volume fraction i.e.
encouragesianaparticle diffusion in the boundary layer. Naparticle species (concentration)
boundary layer thickness will therefore also be increased. The Schmidt number embodies the ratio
of momentum diffusivity to specse(naneparticle) diffusivity. WhenSc> 1, as studied in this
paper, momentum diffusion rate exceeds species diffusion rate. As Sc increases from 6 to 7, this
results in slower nanparticle migration which manifests in a depleted concentrations of- nano
particles although a more homogenous distribution throughout the boundary layer transverse to the
sheet plane is achieved. Schmidt number is therefore a key parameter via whighaniaie
transport can be manipulated. Increasing thermal buoyancy Gjigé€nerates a similar effect and

also reduces nanmarticle volume fraction. Therefore greater thermal buoyancy force
simultaneously decreases ngranticle concentration boundary layer thickness. In fig. 4b we
observe that while increasing thermoplsiseparameterNt) substantially boosts the naparticle
concentration, an increase in Brownian motion paraméiéj bas the contrary influence and
considerably suppresses ngvarticle volume fraction magnitudes. With increasing Prandtl number
(Pr) as $iown in fig. 4c, the nanparticle volume fraction is initially elevated in close proximity to

the wall but thereafter the effect is reversed as we approach the free stream. Further from the wall
the naneparticle (volume fraction) magnitudes are slightlecreased. With greater thermal
relaxation effect, in fig. 4c, there is a weak elevation in faarticle concentration values. This is
understandable since the effect is achieved indirectly via the coupling of the energy and species
diffusion boundary lagr equations. The prominent influence of thermal relaxation is on
temperatures and a diminished effect is sustained therefore by thparéioke concentration field.

Fig. 5 presents the evolution in skin friction (dimensionless surface shear stresegloaty
gradient wat the wall, with Hartmann numb@d)(and thermal buoyancy rati@(). There is a

strong elevation in skin friction with greater magnetic field strength to which the Hartmann number
is proportional. The profiles are all linear and nmaizied at low values of thermal buoyancy ratio

and minimized at high values of thermal buoyancy ratio. Clearly therefore increasing thermal
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buoyancy effect decelerates the boundary layer flow (decreases skin friction) and also serves to
elevate momentum badary layer thickness.

Figs 6ac show the response in wall heat transfer rate i.e. Nusselt number with various-thermo
physical parameters. In fig 6a an increase in Hartmann nurbecléarly suppresses Nusselt
number implying a decrease in heat transgbrto the wall. This agrees with our earlier
computations of temperature response (fig. 3a) since higher magnetic field body force will heat the
nanofluid boundary layer and this will transfer heat into the body of the fluid away from the wall.
Higher themal relaxation ( values again also induce a fall in Nusselt number values and this is
explained by the increase in temperatures (fig. 3c) described earlier. This causes the decrease in
Nusselt number at the walHigher thermal buoyancy ratidsf) howeve elevates the Nusselt
number and physically this is consistent with the depletion in temperatures computed in fig. 3a with
greater thermal buoyancy force effect. With increasing thermophoresis paraigtas (plotted in

fig. 6b, Nusselt number is alsdepressed and again this is due to the elevation in temperatures
within the nanofluid boundary layer regime with greater thermophoretic effect (as computed earlier
in fig. 3b).With stronger Brownian motion (highdb values), again Nusselt number is redlieed

once again this is directly attributable to the elevation in temperatures within the nanofluid sheet
(fig. 3b). Heat transfer rate to the wall must therefore simultaneously decre@sés.shows that

the Nusselt number is enhanced with greater ®rarumber Pr) but suppressed with greater
Schmidt number. Increasing thermal buoyancy force (hiGhemlues) however generate a steady
ascent in Nusselt number magnitudes implying that greater heat is transferred to the sheet (wall)
with larger thermabuoyancy force since the boundary layer is cooled and thermal boundary layer
thickness is decreased.

Figs 7ac present the evolution of local Sherwood number (dimensionlesspzatide wall mass
transfer rate) with various thermal, magnetic and nam®sgarameters. Increasing Hartmann
magnetic parameteiM) is found to considerably reduce Sherwood number i.e. greater magnetic
field applied transverse to the sheet results in a decreased migration gfanacles towards the

wall, since nangparticle concentrations in the boundary layer are elevated (as shown earlier).

Conversely greater thermaglaxation time (J) very strongly enhances local Sherwood number

magnitudes, for any magnetic field scenario. Evidently greater theretakation therefore
encourages mass diffusion of ngparticles towards the wall (sheet). With greater thermal
buoyancy effect (highe®; values) local Sherwood number is also markedly and steadily elevated
as testified to by the linear nature of the adasy profiles. Fig 7b shows that with increasing

Brownian motion parameteiNp), there is a strong elevation in local Sherwood number values,
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irrespective of the values afigrmophoresis parametéMt] and thermal buoyancy rati&). This

increase is du# the elevated migration of naparticles towards the wall with greater Brownian
motion (smaller particle size) effect. On the other hand, an increase in thermophoresis parameter
(Nt) generates the opposite effect and significantly depresses local $Henumber since it
elevates nangparticle concentrations within the nanofluid body regime. An increass walues

(greater thermal buoyancy effect) consistently enhances mass transfer rates to the wall and results in
an increase in local Sherwood numineagnitudes. Fig. 7c shows that while increasing Schmidt
number elevates the local Sherwood number values very considerably, a rise in Prandtl number has
the converse effect (although weaker) and noticeably reduces local Sherwood number. Increasing
thermal buoyancy ratio G;) once again achieves a steady elevation in local Sherwood number

magnitudes, although the rate of ascent is much less pronounced than in figs 7a and b.

5. CONCLUSIONS

A mathematical model has been developed to simulate the steataramagnetohydrodynamic,
incompressibleelectricallyconductingnanofluid flow, heat and mass transfer from a stretching
sheetin the presence of a transverse static magnetic flédd. Buonjiornio nanofluidormulation

has been adopted which invokespgdes diffusion equation for the naparticle migration. The
non-Fourier Cattane&hristovheat fluxmodelhas also been employed to provide a more realistic
estimation of temperature distribution in actual nanofluids. Via suitable scaling transfosratan

the deployment of carefully selected dimensionless variables, the dimensionless nonlinear partial
differential conservation equationBave been transformed to an ordinary differentialindary
value problemwith appropriate boundary conditions. A nemcal solution has been presented
based on an optimizedurth order Rung&utta algorithmcombined withshooting quadratur&he
solutions have been validated, where possible, with earlier published results fmagoatic and
forced convection(buoyany absent) scenarios. The emerging boundary value problem has been
shown to be dictated by a numberkefy thermophysical parameteramelyHartmann(magnetic

body force)number, thermabuoyancy ratipthermal relaxation time parameter, Schmidt number,
thermophoresis parameter, Prandtl number and Brownian motion nuiiteeinfluence of these
parameters has been computedvelocity, skin friction, temperature, Nusselt number, Sherwood
number and nanparticle concentration distributionEhe present ingstigation has shown that:
(DIncreasing Brownian motion parametestrongly elevates temperatures alogtal Sherwood

number valuesvhereast decreases nanoarticle volume fraction and Nusselt number values.
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(i) Increasing magnetic parameter is founddexelerate the boundary layer flow (ireduce
velocities) and alsweduce heat transfer rate at the wall (Nusselt numbbbereas it enhances
temperatureand local Sherwood number magnitudes

(i) Increasing thermal buoyancy parameter significantlyreases anoparticle volume fraction
whereas it weakly reduces temperatures in the nanofluid.

(iv) Increasing thermal relaxation time (i.e. the fiurier model) markedly elevates temperatures
throughout the boundary layer whereas initially it weakly eases nanparticle volume fraction
(species concentration) and thereafter slightly depresses magnitudes towards the boundary layer
free streamThe Fourier heat conduction model (vanishing thermal relaxation time)-preticts
temperatures compared witie non Fourier model.

(v) Increasing thermophoresis parameit@reases both temperatures and npaxticle volume
fraction, whereas it decreases both the Nusselt number and local Sherwood number.

(vi) Increasing Schmidt number reduces the Nusselt@uwhereas it elevates the local Sherwood
number.

(vii) Increasing Prandtl number strongly elevates Nusselt number whereas it weakly reduces the

local Sherwood number.

The present study has been confined to Newtonian nanofluids. Future investigaticmsider

rheological aspects and will be communicated imminently.
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