Three-Dimensional Imaging of Magnetic Domains with Neutron Grating Interferometry

http://dx.doi.org/10.1016/j.phpro.2015.07.057

<table>
<thead>
<tr>
<th>Title</th>
<th>Three-Dimensional Imaging of Magnetic Domains with Neutron Grating Interferometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Manke, I, Kardjilov, N, Schäfer, R, Hilger, A, Grothausmann, R, Strobl, M, Dawson, MN, Grünzweig, Ch, Tötzke, Ch, David, Ch, Kupsch, A, Lange, A, Hentschel, MP and Banhart, J</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/id/eprint/40754/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2015</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk.
Three-Dimensional Imaging of Magnetic Domains with Neutron Grating Interferometry

Abstract

This paper gives a brief overview on 3D imaging of magnetic domains with shearing grating neutron tomography. We investigated the three-dimensional distribution of magnetic domain walls in the bulk of a wedge-shaped FeSi single crystal. The width of the magnetic domains was analyzed at different locations within the crystal. Magnetic domains close to the tip of the wedge are much smaller than in the bulk. Furthermore, the three-dimensional shape of individual domains was investigated. We discuss prospects and limitations of the applied measurement technique.

Keywords: neutron imaging; tomography; magnetic domains; grating interferometry; darkfield imaging; shearing gratings; Talbot-Lau; three-dimensional data quantification; tomographic reconstruction
1. Introduction

Neutron imaging has become an extensively used measurement technique on various fields [1-9]. It plays an important role in the investigation of engineering materials and components, e.g. in fuel cell research where it has already become a well-established method [10-18]. The sensitivity of polarized neutrons to magnetic fields allows for two- and three-dimensional imaging of magnetic fields [19-25]. However, visualization of magnetic bulk domains with such a polarized neutron imaging setup is difficult because of the high strength of magnetic fields within magnetic domains of most materials [26-28]. Some years ago grating interferometric imaging with X-rays and neutrons was introduced by Pfeiffer et al [29, 30]. Grating interferometric imaging is an arising measurement technique providing access to structural information of samples that is hardly accessible by other methods. In combination with neutrons it is possible to visualize magnetic domain walls within the bulk of a material [31-34]. Neutrons are scattered by magnetic domain walls contributing to the so-called “darkfield” signal. Strobl et al. have shown that the neutron darkfield signal can be exploited for reconstructing three-dimensional (tomographic) data sets [35-38]. Two years later Manke et al. presented a modified measurement mode that allows for the reconstruction of three-dimensional images revealing the distribution of magnetic domains within a bulk material [39].

The aim of this paper is to give a brief overview on neutron darkfield imaging of magnetic bulk domains [39].

2. Experimental setup

2.1. Neutron Imaging Instrument

The measurements were performed at the CONRAD/V7 instrument at the BER II research reactor (Helmholtz Centre Berlin for Materials and Energy, HZB)[40]. The research reactor BER II is a light water reactor with about 10 MW thermal power. Close to the reactor a cold neutron beam source operating at about 25 K is installed. The tomography instrument CONRAD/V7 is located at the end of a curved neutron guide that is attached to the cold neutron source. The main advantage of the curved guide is the elimination of most of the high energy neutrons, i.e. thermal and epithermal neutrons, and of gamma radiation.

An adaptable detector setup was used for the presented measurements and the spatial resolution adjusted to about 35 µm [41]. However, it should be noted that the resolution strongly depends on the geometry of the installed grating setup being the main limiting factor.

2.2. Grating Set-Up

A shearing-grating setup was installed in front of the detector of the CONRAD/V7 instrument as shown in figure 1 [39]. Such a grating setup consists of at least three different gratings: A source grating G0, a phase grating G1 and an absorption grating G2 [30, 42]. A schematic drawing of such a setup is shown in figure 2. The sample can be located at different positions. For the tomographic measurement it was placed between G1 and G2 [39]. The details about phase grating interferometric imaging are described e.g. by Pfeiffer et al. [29, 30, 42]. The gratings were manufactured by Ch. Grünzweig and Ch. David at Paul Scherrer Institute (Villigen, Switzerland). The manufacturing process is described by Grünzweig et al. [43].

2.3. Tomographic measurement

The exposure time for each radiographic projection (2048x2048 pixels) was 100 s (90 s in the case of the FeSi steel sheet). During each scan 14 images (16 images in case of the FeSi steel sheet) were taken (over 1 period) [39]. The overall measurement time for a single G2 scan was about 30 min. All datasets were corrected by background and flat field images. For evaluation of the neutron dark-field images a sinusoidal fitting routine was applied. The tomographic reconstruction included 100 of such image sets recorded in equidistant angular steps over a range of 360°.
2.4. Samples

For detailed description of the FeSi steel investigated in radiographic mode we refer to Grünzweig et al.[32]. Subject of the tomographic investigation was a FeSi single crystal (Fe 12.8-at%Si) with a cylindrical wedge shape. The diameter was about 7 mm and the length about 15 mm. It was grown by zone melting and later cut to a wedge-shaped sample by an electro-erosive saw [39]. Starting from the tip, the width of the wedge increases from 0 mm to 7 mm over a distance of about 14 mm.

2.5. Tomographic data reconstruction and visualization

We applied an iterative reconstruction algorithm (DIRECTT), which is especially suited for so-called “incomplete” data sets [44-48]. Three-dimensional visualization and rendering was completed using commercial software (AVIZO and VGStudioMax).

3. Results

3.1. Radiography

Fig. 3 shows the attenuation contrast and the darkfield contrast image of a FeSi steel sheet. Since the steel sheet has a constant thickness no features can be seen in the attenuation contrast image (Fig. 3 (a)). Even the spherical shape of sample is only slightly visibly. However, neutrons scattered at domain walls are revealed by the darkfield
signal (Fig 3 (b)). The dark vertical stripes can be assigned to individual magnetic domain walls. Close to the center of the sample the domain width is decreasing in accordance with the findings of Grünzweig et al. [32].

![Absorption contrast image (a) and darkfield image (b) of a FeSi sheet.](image)

Fig. 3. Absorption contrast image (a) and darkfield image (b) of a FeSi sheet.

3.2. Tomography

Using the example of a wedge-shaped FeSi single crystal it is illustrated how the radiographic measurement technique can be extended to three dimensional (tomographic) imaging of magnetic domains. The fundamental challenge of this approach is that the domain walls are only visible if they are aligned almost parallel to the incident neutron beam. Therefore, in a single radiographic projection image only a small amount of the domain walls is revealed. During tomographic data acquisition, the sample is stepwise rotated. At each angle position different domains become visible. After a full rotation of 360° all domain walls became visible at least two times (Note: in the case of a 180° tomography only once). The angle dependent visibility of domain walls is a very challenging problem for conventional tomographic reconstruction algorithms, i.e. the filtered back-projection algorithm (FBP). Although FBP gives still acceptable results, we decided to use a more sophisticated although time consuming procedure that is called DIRECTT and that provides some advantages over FBP.

A horizontal slice through the reconstructed tomogram of the FeSi wedge is shown in Fig. 4. The white lines are assigned to magnetic domain walls. The walls are not arbitrarily orientated but prefer certain directions mainly the main axes of the crystal, i.e. (100), (010) and (001) (see Hubert & Schäfer and Schäfer et al. for further details)[26, 28]. This image also reveals that the width values of the different magnetic domains (at least of the larger ones) are very close to each other, i.e. some values can be found more frequently than others.

![Cross section through the shearing grating neutron tomogram of a FeSi single crystal](image)

Fig. 4. Cross section through the shearing grating neutron tomogram of a FeSi single crystal [39].

This finding was analyzed in more detail in Figure 5 (a), where slices through the tomogram were taken at different positions of the tapered section of the FeSi crystal. It can be seen that the domain widths are correlated to the crystal width, i.e. magnetic domain widths are increasing with increasing crystal width. Just for illustration two additional cross sections through the tomogram along two different arbitrarily chosen planes are given in figure 5 (b).
3.3. Data quantification

Aim of the presented tomographic investigation was the verification of a theory on the correlation between magnetic domain widths and crystal size as described in Hubert & Schäfer [26, 39]. For a quantitative analysis of the magnetic domains the data set was binarized applying a certain grey value threshold. This allows for the separation of individual magnetic domains as shown in figure 6.

Individual magnetic domains could be extracted from the data set and analyzed individually. One of the magnetic domains extracted at a certain location (marked in figure 7 (a)) is shown in Fig. 7 (b) from three different viewing angles. Although the geometric shape of a magnetic domain seems to be very complicated, it is still possible to define a domain width for a certain location within the magnetic domain.
The domain size analysis revealed that the domain width \(W \) is increasing with the crystal thickness \(D \) as follows [39]:

\[
W \sim \sqrt{D}
\]

(1)

However, this equation is only valid for domain sizes above \(\sim 100 \, \mu m \). In fact the correlation is more complex. The general correlation of bulk domain width \(W_b \) and crystal width \(D \) can be described by the following equation:

\[
D = 2W_b^2 \left(\frac{C_p}{\gamma_w} + \frac{2C_s}{G_m C_s W_b^2} + \gamma_w \right)
\]

(2)

where \(\gamma_w \) is the specific wall energy, \(C_p \) is the “quasi-closure” coefficient, \(C_s \) a geometry-dependent factor and \(G_m \) describes the maximum rate (speed) of the domain width that is rising from its surface width \(W_s \) to its bulk value \(W_b \). A detailed explanation of this result and of the correlation between domain width and crystal thickness are given by Hubert & Schäfer [26, 39].

4. Discussion

Neutron darkfield imaging with shearing gratings (or grating interferometry) can be used to visualize the magnetic domain walls in the bulk of a FeSi single crystal three-dimensionally. The quality of the 3D data is sufficient for detailed analysis of the magnetic domain shapes and structures. However, also some of the drawbacks of the measurement technique should be mentioned. Measurement times are comparably long. It takes several days for a full tomography with acceptable signal-to-noise ratio. Typical spatial resolutions are between 70-150 \(\mu m \). This is still not sufficient, because the domain shapes are blurred by the limited resolution and data quantification becomes very difficult. Owing to fundamental properties of the darkfield signal the projection data set is not suited for conventional tomographic reconstruction algorithms, although reconstruction results with FBP are still acceptable.
5. Summary/Outlook

We demonstrated the possibilities of neutron darkfield tomography to analyze magnetic domains in 3D. The quantitative investigation of the magnetic domains in a FeSi single crystal revealed a correlation between crystal width and domain widths as predicted by Hubert & Schäfer [26]. The major drawbacks of the technique are the comparably long measurement times of several days and the still limited spatial resolution of about 70-150 µm.

In future, optimized grating setups may drastically reduce the required measurement times, e.g. by higher visibility values. The introduction of novel high resolution imaging detection setups with high light through-put will further improve the quality of data sets [49, 50]. Furthermore, the installation of new imaging stations, e.g. at the European Spallation Source in Sweden [51], could provide much higher neutron fluxes, that may reduce measurement times to a few hours in future.

Acknowledgements

The authors would like to thank G. Behr for the preparation of the FeSi single crystal.

References