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Heat-flow vari ability  of suspended timber ground floors : implications for in -situ heat -flux measuring  ! "

Pelsmakers, S.1 * , Fitton, R.2, Biddulph, P.3, Swan, W. 2, Croxford, B.4, Stamp, S. 4, Calboli, F.C.F. 5, #"

Shipworth, D.3, Lowe, R.3, Elwell, C.A.3 $"

 %"

Abstract  &"

Reducing space heating energy demand supports the UKÕs legislated carbon emission reduction targets and ' "

requires the effective characterisation of the UKÕs existing housing stock to facilitate retrofitting decision-( "

making. Approximately 6.6 million UK dwellings pre-date 1919 and are predominantly of suspended timber ) "

ground floor construction, the thermal performance of which has not been extensively investigated. This * "

paper examines suspended timber ground floor heat-flow by presenting high resolution in-situ heat-flux !+ "

measurements undertaken in a case study house at 15 point locations on the floor. The results highlight !! "

significant variability in observed heat-flow: point U-values range from 0.56 ±0.05 to 1.18 ±0.11 Wm-2K-1. !# "

This highlights that observing only a few measurements is unlikely to be representative of the whole floor !$ "

heat-flow and the extrapolation from such point values to whole floor U-value estimates could lead to its !%"

over- or under- estimation. Floor U-value models appear to underestimate the actual measured floor U-value !& "

in this case study. This paper highlights the care with which in-situ heat-flux measuring must be undertaken !' "

to enable comparison with models, literature and between studies and the findings support the unique, high-!( "

resolution in-situ monitoring methodology used in this study for further research in this area.  !) "

 !* "

Keywords:  building performance; in-situ U-values; pre-1919 housing; retrofit; suspended timber ground #+"

floors; thermal performance    #! "

Nomenclature  
U, Umean, Up, 
Uwf,  

Thermal transmittance or U-value, Wm-2K-1 ; Umean is the estimated in-situ U-value 
obtained from a mean of ratios of point U-values (Up). Up is a point U-value and is the 
term used as a generic description of the small area-based in-situ U-value 
measurement on a certain location on the floor. Uwf is the in-situ estimated whole floor 
U-value derived from Up-values.  

HF1, HF2,É  Heat-flux sensor location 1, 2,É  
TSi, Tea Internal surface air temperature and external air temperature respectively 
q In-situ measured heat-flow rate, Wm-2 
Rsi Internal surface thermal resistance, taken to be 0.17 m2KW-1 for downward heat-flow 

through floors 
 ##"
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1. Introduction  #* "

The UK has committed to reduce CO2, or equivalent, emissions by 80% from 1990 levels by 2050 in the $+"

Climate Change Act 2008 [1]. Deep cuts in CO2 emissions associated with the residential sector, which is $! "

responsible for approximately 30% of the UKÕs total emissions [2], are required. Reducing carbon emissions $#"

associated with domestic space heating, which accounts for around 13% of the UKÕs emissions [3], is a key $$"

aspect of the UKÕs planned transition to a low carbon economy [3, 4].  $%"

 $&"

There are approximately 27 million dwellings in the UK, the majority of which are not well insulated [4]. An $' "

estimated 4.9 million dwellings were built pre-1919 in England alone [5] and 6.6 million in the UK [6]; seventy $( "

to eighty-five percent of existing UK housing is expected to still be in use in 2050 [7-9]. Dwellings of the pre-$) "

1919 period are predominantly of solid wall [10-12] and suspended timber floor construction [10]. They tend $* "

to have larger floor areas [5] and are predicted to have a 40% greater energy demand per metre floor area %+"

compared to newer dwellings built post-1990 [13]. A large proportion of this pre-1919 dwelling typology is %!"

also classified as hard to treat (HTT) [5, 6], due to the relatively high cost of retrofit options, disruption and %#"

difficulty to upgrade [14-16]. It is estimated that at least 50% of energy demand in pre-1919 housing is for %$"

space-heating [5, 17-19]; much of this heat is lost through un-insulated walls and insufficiently insulated roofs %%"

[20]. The proportion of total dwelling heat loss from un-insulated ground floors depends on the overall %&"

dwelling fabric efficiency standard and is estimated between 10% in un-insulated dwellings [20] and 25% in %'"

otherwise well insulated dwellings where the ground floor remains uninsulated [21]. Addressing this %("

challenging typology presents an opportunity to deliver significant carbon reductions and increased occupant %)"

thermal comfort from improved building fabric performance [22, 23]. However, this carbon reduction %*"

challenge is intensified by the underperformance of many interventions [24-27] and the low rate of &+"

refurbishment [28-30]. Just four percent of solid walls in the UKÕs pre-1919 properties are insulated [31] and &! "

it is unknown how many pre-1919 ground floors are insulated.  &#"

 &$"

Initiatives such as the UK governmentÕs Green Deal and Energy Company Obligations (ECO) policies, which &%"

were preceded by the Community Energy Saving Programme (CESP) and the Carbon Emissions Reduction &&"

Target (CERT), aimed to increase the rate of retrofit [32, 33]. One of several drivers for energy-efficiency &' "

measures is the cost-benefit of interventions [34]. The Green Deal for example allowed building occupants to &("

take out a pay-as-you-save loan to finance certain energy efficiency improvements, assuming the loan could &)"

be paid back from the predicted energy savings [35, 36]. However, the actual carbon reductions and cost-&*"

effectiveness of retrofit interventions is contingent upon the delivered improvement in thermal performance. '+ "



Recently, potential disparities between predicted and actual performance of existing construction elements '! "

have been identified [37, 38]. For example, in-situ measurement of U-values in solid walls were found to be '# "

lower than those predicted [37, 39, 40], which affects the predicted energy savings and payback. However, '$ "

while insulation of suspended timber ground floors was a Green Deal approved intervention measure [41], '%"

the heat-flow through this element, both uninsulated and insulated, is not well characterised at present, '& "

hindering retrofitting decision-making. Few in-situ measurements of floor heat loss have been undertaken '' "

and there is a need to understand the implications of the physical heat loss patterns on in-situ measuring '( "

methodology, such as location and spread of sensors across the floor, prior to undertaking larger scale field ') "

measurements.  '* "

 (+ "

This paper presents an investigation into the spatial variation in U-values derived from measurements at (! "

points on a suspended timber ground floor, and how this variation can affect the estimated whole floor U-(# "

value. This study presents the results of high-resolution in-situ measurements of the thermal characteristics ($ "

of a suspended ground floor in a controlled environment in the Energy House (EH) a pre-1919 semi-(%"

detached house reconstructed in an environmental chamber at the University of Salford (UK). The potentially (&"

large variation in whole floor U-value estimates from low resolution measurement campaigns is illustrated (' "

and wider implications for the method of U-value estimation of floors are discussed. (( "

 () "

Firstly, the research method is discussed, which includes a description of the Salford Energy House, (* "

instrumentation, in-situ measuring method and uncertainty. Subsequently, results and discussion are )+ "

presented, focusing on wider applicability of implications arising from the findings, such as implications for )! "

future in-situ measuring techniques in the field and comparison difficulties with models and other published )# "

in-situ U-values.  )$ "

 )%"

2.  Method  )&"

A 5-day monitoring programme was undertaken in the Salford Energy House (EH) in 2013. The EH is a )' "

reconstructed 1919 two bedroom semi-detached dwelling in a large environmental chamber at the University )( "

of Salford. The house is separated on one side with a solid brick party wall from another smaller house in the )) "

thermal chamber, referred to in this paper as the neighbouring house. The EH ground floor is of suspended )* "

timber construction, with timber floorboards in the living area and tiled floor finish in the kitchen. Its total *+ "

ground floor measures 28m2, with an exposed perimeter (measured externally) of 16m. The suspended floor *! "

is ventilated through air-bricks with a total ventilation opening area per metre of exposed perimeter of *# "



approximately 0.00077m2/m (calculated in accordance with ISO 13370 [42]) excluding an airbrick opening to *$ "

the neighbouring house. Given that the EH is a reconstructed dwelling there are some differences with an *%"

actual house: (a.) it sits on a 280mm thick concrete slab, which sits on top of an insulated ground floor slab *&"

(the slab of the building which houses the chamber) Ð collectively referred to as the concrete substructure; *' "

(b.) atypically, floor void ventilation occurs in between both houses and there are no airbricks on the back *( "

facade; (c.) joists run from gable wall to party wall and there is only a 50-70mm gap under the 190 mm joists *) "

and the concrete oversite slab, likely reducing free airflow in the void (see Fig. 2); (d.) the floor finish is ** "

tongued and grooved floorboards, apart from ten floorboards, which have gaps between them; this hybrid is !++ "

atypical of floors of this kind.  !+! "

 !+# "

While the EH structure and climatic conditions are a simulation of the actual environment, the EH can be !+$ "

used to investigate in detail some aspects of the variability of heat-flow across a construction element and !+%"

report on the implications for in-situ measuring techniques of floors. For example, the EH enabled high-!+&"

resolution monitoring (i.e. many points across the surface) and the control of the variables which actual !+' "

houses are subject to in monitoring campaigns, such as the exclusion of occupant interference, a controlled !+( "

internal and external environment and exclusion of solar gain and wind effects. Additionally, the steady-state !+) "

conditions and isolation of dependent effects facilitated repeated measurement of the physical variables, !+* "

leading to reduced measurement time and small instrument measurement uncertainties derived from !!+ "

statistical error propagation techniques. Further advantages of using the EH included monitoring under !!! "

conditions which were not otherwise possible in occupied dwellings, such as heating the neighbouring house !!# "

to a constant 18¼C and the ability to electrically space heat to control for the influence of uninsulated radiator !!$ "

pipes in the floor void affecting heat-flow measurements and instead enabling to study of the spatial variation !!% "

of the floor heat-flow.  !!& "

 !!' "

This research is based on in-situ measuring of a case-study floor and as such the numerical results are not !!( "

representative of the wider pre-1919 housing population. However, as outlined above there are significant !!) "

advantages of research in a controlled environment to isolate physical effects and the physical insight and !!* "

qualitative results may be used to highlight potential trends and wider methodological implications [43]. This !#+ "

study aims to provide such broader insight, as undertaken elsewhere, such as the broadly applicable cavity !#! "

wall heat loss mechanism identified by Lowe et al in a case study [44].  !## "

 !#$ "

 !#%"



2.1. Instrumentation of the Salford EH !#& "

Variables measured were external environmental chamber air temperatures (Tea, ¼C), heat-flux (q, mV) and !#' "

internal surface temperatures (TSi, ¼C) in 15 locations on the bare floorboards of the uninsulated floor of the !#( "

living room, as shown in Fig. 1. One of the 15 locations was measured on a joist. Three sensor locations !#) "

were near airbrick openings in the void below and <300mm from an external wall (locations 1, 9, 14); !#* "

locations 10, 12 and 13 were more than 300mm and less than 1000mm away from an external wall; with !$+ "

locations 7 and 15 in the middle of the room and locations 2, 3, 4, 5, 6 and 8 ! 1250 mm from an external !$! "

wall. The external chamber was held at ~5-6¼C and internal living spaces at ~18-20¼C during the monitoring !$# "

campaign. !$$ "

 

Fig. 1.  Salford EH living room plan and in-situ point measurement locations; note that location 11 was taken !$%"

on a joist; the shaded area signifies a 1 metre perimeter zone. !$& "

 !$' "

The Hukseflux HFP01 heat-flux sensors have instrument accuracy of ± 5% and each was located with a !$( "

surface temperature sensor directly adjacent to each of them; sensors were fixed to the surface with a thin !$) "

layer of Servisol heat-sink compound (thermal conductivity = 0.9 Wm-1K-1 [45]) to ensure good surface !$* "

contact and were secured with masking tape in the middle of a floorboard. 110PV surface temperature !%+"

thermistors with accuracy of ±0.2¡C alongside type K thermocouples (±1.0¼C) were used to measure timber !%! "



floor surface temperatures. Temperatures in the chamber, conditioned to external environmental conditions !%#"

(Tea, ¼C), were measured with HOBO U12 (±0.35¼C) temperature sensors. Areas of floor were sought which !%$"

broadly represented the conditions and structure of the floor, with minimal influence from local heat gains !%%"

and other influences [46, 47]; floor joist locations were avoided apart from location 11. An infrared camera !%&"

was used to aid sensor placement as recommended by for example ISO [47], ASTM [48] and McIntyre [49].  !%' "

 !%( "

All measurements were recorded at 1 minute sequential intervals and averaged for hourly analysis. Outliers !%) "

caused by researcher influence such as opening up floorboards to collect data for other research purposes !%*"

were removed using ChauvenetÕs criterion [50]. This reduced the 120 hour data by three to seven hours !&+"

depending on the sensor location. This process did not significantly change mean U-values and similar !&! "

results were obtained with manual data removal. For instance, all mean U-values were within 0 to 1% from !&# "

the data prior to quality control, though in location 1 and 9 this was 1.5% and 2.7% respectively.  !&$ "

 !&%"

2.2. Measurement uncertainty and data analysis method !&&"

In-situ U-value measurements were undertaken with the use of heat-flux (HF) monitoring equipment and by !&' "

measuring representative and accurate temperatures on both sides of the construction. The measurements !&( "

required for in-situ U-value estimation are subject to several identified uncertainties associated with !&) "

instrumentation and measuring equipment set-up and the natural variability of U-values as an inherent !&* "

characteristic under changing environmental conditions; see summary Table 1. As errors are assumed !'+ "

independent and random, the individual errors (Eq. (1), Table 1) are combined in the quadrature sum. ISO-!'! "

9869 estimates the natural variability of U-values in the field as ±10% [51], leading to a total estimated error !'# "

of ±14%, but this was significantly reduced when undertaking measurements in the steady-state !'$ "

environmental chamber in this study. The standard deviation (sd) of the data was therefore used in place of !'% "

this variability error, leading to total estimated uncertainties of between ±9 and ±11% for each point location. !'& "

 !'' "

Instrument error  Measuring equipment set -up  error s  Natural variability U (not error)  

± 5% (calibration heatflux 

and temperature sensors) 

[51] 

Edge heat loss error [51] ±3% ±sd (%, hourly data for the 

environmental chamber); ISO 9869 

[51] suggests this is ±10% in the 

field. 

Contact error [51] ±5% 

Temperature location 

measurement error [51] 

±5% 

Total ISO error  ! ! ! ! ! !! ! !! ! ! !! ! ! ! ! !" ! ! (1) 



Table 1.  Summary of estimated measurement uncertainties; adapted from ISO-9869 [51] and grouping by !'( "

authors.  !') "

Unknown random or systematic researcher influence could also affect measurement, such as interference !'* "

with instruments during data-collection; this was minimised during the duration of the study by taking !(+ "

prolonged measurements [52], by keeping the chamber at steady state conditions and by minimising access !(! "

to the EH during the monitoring campaign. Nevertheless, the opening up of the floorboards to collect data in !(# "

the floor void caused some outliers, which were removed as described in 2.1. Systematic errors that could !($ "

affect each individual measurement location include calibration errors, thermal resistance of the heat-flux !(% "

sensor itself and sensor placement errors. These errors were minimised by careful sensor placement with !(& "

use of an infrared camera and by accounting for the thermal resistance of the heat-flux sensor in U-value !(' "

calculations (~ 6.25 x 10-3 m2K/W, [53]). A side by side ÔcalibrationÕ test was carried out at the UCL thermal !(( "

lab after the monitoring period, testing ~50% of the heat-flux sensors used (not all were available) in near-!() "

identical conditions. Heat-flow results indicated that the heat-flux sensors were within ±5% of the mean of the !(* "

group of sensors and also between each other.  !)+ "

 !)! "

In-situ point U-values (Up-values) were estimated according to the mean of ratios as per Eq.(2), instead of !)# "

using the ISO-9869 ÔAverage MethodÕ [51]. This enabled the statistical treatment of random errors - see Eq !)$ "

(1) - as applied through Eq.(2); results in this paper are presented in accordance with Eq.(1) and Eq.(2), !)% "

rounded to two decimal places. If surface temperatures are used, assumed surface resistances are added !)& "

[37, 54, 55] to account for airflow and radiative effects at the surface:   !)' "

! !"#$ ! !
!

!
!!

!! ! ! ! !
! !"# ! !"#$

!"
! ! !" ! ! (2) Ð Mean of ratios !)( "

where Umean  is the final estimated in-situ U-value in Wm2K-1; q is the heat-flow rate (Wm-2) which is inferred !)) "

using each sensorÕs unique sensitivity (or calibration factor, ESen in mVm2W-1). where TSi is the surface !)* "

temperature of the floor in the room, Tea is the external air temperature and RSi  is the internal surface !*+ "

thermal resistance, taken to be 0.17 m2KW-1 in accordance with BSI [56]. Index j identifies individual !*! "

measurements in the same location over time and n is the number of measurements taken sequentially. No !*# "

external surface thermal resistance is added if external air temperatures (Tea) are used instead of surface !*$ "

temperatures, as was the case in this study.  !*%"

 !*& "

 !*' "



3. Results and discussion  !*( "

3.1. Large spread of observed Up-values across the floor surface  !*) "

Fifteen locations on the floor were observed, as marked on Fig. 1. !** "

There was a large variation between the 15 Up-values depending on #++"

where the point measurements were undertaken; as expected, #+! "

nearer the exposed perimeter, the observed Up-value was greater #+#"

than that further away. Up-values ranged from 0.56 ±0.05 Wm-2K-1 far #+$"

from the external walls (location 5)  to 1.18 ±0.11 Wm-2K-1 in the bay #+%"

window area (location 14), see Table 2. Location 11 was measured #+&"

on a joist and had an estimated U-value of 0.92 ±0.09 Wm-2K-1; a #+' "

21% relative change compared to the adjacent floor-board U-value of #+( "

1.16 ±0.11  Wm-2K-1in location 10.  #+) "

 #+*"

Table 2.  Results of estimated point  U-values in accordance with Eq.(2) and total uncertainty in accordance  #!+ "

with Eq.(1). #!! "

3.2. Causes for such large variability of Up-values #!# "

The large variability in Up-values is because the thermal path varies considerably across a floor, primarily #!$ "

because the ventilation rates in the void vary in addition to expected increases in the thermal resistance as #!%"

the distance to the exterior wall changes, as also reported for solid ground floors [57-59], both factors lead to #!& "

expected increased heat-flow near the perimeter. Conductive and convective heat-flow between a point on #!' "

the floor and exterior air depends on a number of heat-flow paths, including through the exterior wall, through #!( "

the ground and through the void air layer [21, 42, 60]. In one dimension, the latter two of these heat-flow #!) "

paths may be simplified as inversely proportional to the distance between hot and cold points; in a real floor #!* "

it is unlikely that this clear relationship would hold due to the complex three dimensional nature of heat-flow ##+"

and ventilation. Additionally, ventilation rates vary considerably in the floor void [61], being notably higher in ##! "

the proximity of airbricks or sources of ventilation, increasing the rate of heat-flow. This ventilative heat-flow ###"

will vary in accordance to this relationship and is likely to be higher in floor perimeter areas but is also likely ##$"

to depend on airbrick locations and void obstructions such as joist locations and sleeper walls. Given that ##%"

airbricks are located in exposed perimeter walls, the ventilative and exterior wall heat-flow factors are ##&"

confounding variables and it is not possible to isolate the impact of these different heat-flow mechanisms; ##' "

this observation suggests that these factors require further research.  ##( "

Location on floor 
and distance to 
internal face of 
nearest  external 
wall (mm) 

In-situ 
measured U -
value  
(Wm-2K-1)  

HF1 185 0.73 ±0.08 

HF2 1290 0.72 ±0.08 

HF3 2500 0.66 ±0.06 

HF4 2960 0.61 ±0.06 

HF5 2589 0.56 ±0.05 

HF6 2192 0.67 ±0.06 

HF7 1880 0.77 ±0.07 

HF8 1260 0.81 ±0.08 

HF9 195 0.92 ±0.09 

HF10 510 1.16 ±0.11 

HF11 500 0.92 ±0.09 

HF12 780 1.03 ±0.10 

HF13 580 1.09 ±0.11 

HF14 250 1.18 ±0.11 

HF15 1912 0.70 ±0.07 



Fig. 3 illustrates the increased heat-flow near the perimeter and plots U-values derived at each observed ##) "

location as a function of their nearest distance to an exposed wall and Fig. 4 plots the Up-values as a ##* "

function of the distance to the bay wall. A simplified categorisation of estimated Up-values in non-perimeter #$+"

and perimeter zones was undertaken with a 1000 mm perimeter zone after Delsante [57] for solid ground #$! "

floors. Distances are from the nearest internal surface of the external wall to the middle of the heat-flux #$#"

sensor. In general and as expected, Up-values are higher in the perimeter zone for the suspended timber #$$"

ground floor. Statistically comparing the Up-values within 1000 mm from the external wall (locations 1, 9, 10 #$%"

and 12 to 14, Fig. 1, in red) with the non-perimeter zone of the floor (points in black), an unpaired Mann-#$&"

Whitney U (Wilcoxon rank sum) test suggests that the observed Up-values in the perimeter and non-#$' "

perimeter zone differ significantly (MannÐWhitney W = 46, n1 = 6 n2 = 8,P < 0.05 (0.003), unpaired). The #$( "

probability that there is a zero difference in heat-flow between the perimeter zone and the non-perimeter #$) "

zone of the floor is negligible (0.003, or about three in 1000). Fig. 3 shows the expected relationship between #$* "

heat-flow and distance to external walls; however as stated above, it is not possible to isolate the effect of #%+"

the airbricks in the perimeter walls and further exploration would be required to isolate these variables. Fig. 3 #%!"

also highlights that while the use of a perimeter zone provides a convenient measure, there is no clearly #%#"

defined extent of the perimeter effect as there is no abrupt change after 1000mm, but a gradual reduction in #%$"

Up-values the further away from the external environment. #%%"

As illustrated in Fig. 3 and Fig. 4, in general, increased heat-flow in locations nearest to the external bay wall #%&"

(10,12 to 14) is observed compared to locations near the gable wall (locations 1, 9); this is likely explained by #%'"

the bay wallÕs two airbricks and its large exposed perimeter; though this observation is based on a few #%("

locations only. The joists run from gable wall to party wall with little space underneath them (50-70mm, see #%)"

Fig. 2), likely preventing airflow from the bay wall airbricks into the rest of the void and vice versa. One would #%*"

expect this to lead to an isolated area of low void and surface temperatures and hence increased heat-flow #&+"

in the bay area with lower heat-flow in the middle of the floor due to the joist inhibiting the mixing of colder air #&! "

further along the floor, leading to a more pronounced floor heat-flow effect in the bay-wall area. #&#"

 #&$"
Fig. 2 shows the limited space under the deep joists and #&%"

location of the airbricks within the deep joist zone along the #&&"

gable wall. This is likely to have channeled airflow between #&' "

joists, with joists acting as obstructions to flow of air between #&("

different floor areas, in turn affecting heat flow patterns."#&)"



"  

Fig. 3. In-situ estimated Salford EH suspended floor Up-values as a function of nearest distance to exposed #&*"

wall. Red data points are Up-value point locations in the 1000 mm perimeter zone; while black data points #'+ "

are in the non-perimeter zone. Error margins are estimated as per Eq. (1). #'! "

 #'# "

 

Fig. 4. In-situ estimated Up-values as a function of external bay wall distance. Red data points are Up-values  #'$ "

in the perimeter zone; while black data points are in the non-perimeter zone. Error margins are estimated as #'%"

per Eq. (1). #'& "

 #'' "



 

Fig. 5. In-situ estimated Up-values estimated U-values as a function of external gable wall distance. Red #'( "

data points are Up-values  in the perimeter zone; while black data points are in the non-perimeter zone. Error #') "

margins are estimated as per Eq. (1). #'* "

 #(+ "

Fig. 5 plots the Up-values as a function of the gable wall distance and shows asymmetric heat-flow, further #(! "

confirming the above hypothesis. Below sensor locations 1 and 9, airbricks are located with clear airflow #(# "

between joists, unlike in the bay void. This might explain the relatively low estimated Up-values in location 1 #($ "

and in 9, despite their proximity to airbricks and external walls as the cold incoming chamber air mixes with #(%"

warmer void air in this floor void region. However, as both anomalies occur in the only two observed #(&"

locations near the gable wall, further investigation and additional measurements such as void airflow would #(' "

be required to determine the above hypothesis as to why the gable wall is less influential in heat-flow #(( "

determination. After the monitoring period, builderÕs debris in the void, reducing airflow through the airbrick #() "

nearest to location 14, was discovered. This is likely to have affected perimeter heat-flow in location 14 and #(* "

other nearby locations, possibly resulting in reduced Up-values than if the airbrick had been fully clear. #)+ "

 #)! "

Fig 6. illustrates the observed heat-flow as a function of the bay and gable wall distances, by linearly #)# "

interpolating Up-values between observed values. Fig. 6 aids visualisation of trends in floor heat-flow in the #)$ "

room and is not intended to provide an accurate prediction of U-values between measurement points; no #)%"

account is taken of structural factors, such as floor joists. Fig. 6 highlights that heat-flow is generally #)&"

increased near the perimeter of the floor; it illustrates the stronger relationship between heat-flow and #)' "

distance to bay, compared to distance to gable.  #)( "



" 

Fig. 6. Linear interpolated Up-values as a function of both bay (X-axis) and gable (Y-axis) wall distances.  #)) "

 #)* "

3.3. Obtaining a ÔwholeÕ floor U-value (Uwf)!#*+"

While U-values are usually used to characterise the thermal performance of a whole building element, in-situ #*! "

ÔpointÕ U-values are estimated from measurements of heat-flux through a sensor area of 30mm diameter. #*# "

Given the large spread of Up-values across the surface, a single ÔpointÕ U-value is unlikely to be #*$ "

representative of the entire element, as illustrated by the above findings. However, the total thermal #*%"

transmittance (or resistance) of the floor may be estimated from area-weighting [62]. A whole floor U-value #*&"

(Uwf) was obtained by an area-weighted summation of each Up-value multiplied by its representative floor #*' "

area (Aj) as a proportion of the total floor Ð see Eq.(3):  #*( "

Uwf = !!
!! !  

! !!! !!" !

! !" !
                                                                                                          (3)  #*) "

where Uwf (Wm-2K-1) is the whole floor U-value; Aj in m2 is the representative floor area assigned to each U-#** "

value point (Upj) and Awf is the whole floor area. Index j identifies individual point locations on the floor $++"

measured simultaneously and n is the number of point locations observed. Representative areas around $+! "

sensors were identified via infrared thermography, helping to divide the floor surface in a grid in accordance $+#"

with the location of sensors in these areas.  $+$"

 $+%"

For the Salford EH, the whole floor U-value estimated by weighted summation is equal to the mean $+&"

estimated floor U-value of 0.83 ± 0.08 Wm-2K-1; suggesting that a good spread of measurements was taken $+' "

across the floor, though excluding reduced heat loss through the joists. Accounting for 12% joists and $+( "

assuming that the heat-flow through joists is 21% less than through floorboards, as was found for location 11 $+) "



in this study, for illustrative purposes this would give an adjusted whole floor U-value of 0.81 ±0.08 Wm-2K-1, $+* "

so estimated to range from 0.73 to 0.89 Wm-2K-1. Where fewer or less well distributed Up-values are $!+ "

obtained, it is highly unlikely that a simple averaging of these Up-values is appropriate to obtain Uwf and $!! "

hence an area-weighted summation is preferable for determining Uwf. This is illustrated by a hypothetical $!# "

limited monitoring campaign using - as example - only Up-values in locations 4 and 5 on the floor: the $!$ "

estimated Uwf-value would be 0.59 ±0.06 Wm-2K-1, excluding joist presence. This is much lower than the $!%"

estimated whole floor U-value of 0.83 ±0.08 Wm-2K-1, based on the area-weighted summation of 14 $!& "

observed Up-values. Similarly, an overestimated Uwf-value of 1.10 ± 0.11 Wm-2K-1 would be estimated if just $!' "

observing heat-flow in locations 10 and 12; both these estimates are outside the margins of error. $!( "

Furthermore, about 70% of the estimated Uwf-values obtained from just two Up-values would over-or under-$!) "

estimate the case study floor Uwf-value as obtained from the 14 Up-values; this is illustrated by Fig. 7. To $!* "

obtain a larger surface area coverage, an alternative to point measurements might be the use of larger heat $#+"

flux plates, however these instruments are not commercially available but were purpose made and used by $#! "

for instance New Zealand researchers and were about 450mm wide and 600mm long (see for example Cox-$##"

Smith [63]"and"Isaacs [64]). Similar issues of placement and coverage still remain however. $#$"

"$#%"

"

Fig. 7. 91 paired U-values for the Salford EH; only about 30% of the paired values are within the margins of $#&"

error of the whole floor estimated U-value; the red line indicates the whole floor estimated U-value, while the $#' "

red bars indicate the U-value distribution within the error margins of the whole floor U-value. This proportion $#( "

increases to 43% with individual measurements falling within the margins of error of the whole floor U-value; $#) "

measurement in location 8 is the closest to the estimated Uwf-value. $#* "



3.4. Salford Energy House: comparison of the in-situ Uwf-value estimate with model U-value estimates  !$$+"

Obtaining a ÔwholeÕ element U-value is needed for comparison with modelled U-values; which for the case-$$! "

study floor is estimated at 0.58 to 0.71 Wm-2K-1 using ISO-13370 [42], CIBSE [65] Guide A and SAP [66] with $$#"

the same input assumptions: assuming 12% joist presence and depending on assumed external wind $$$"

speeds (0-5 m/s) and concrete ground conductivity of 1.3 to 1.9 Wm-1K-1 [65]. In this case the modelled U-$$%"

value appears to underestimate the in-situ measured Uwf-value between 12% and 28%, based on the above $$&"

model assumptions and outside the estimated margins of measurement error. $$' "

Floor U-value models are simplified and exclude several variables such as structural issues acting as void $$( "

obstructions as described earlier. Models also exclude linear thermal bridging of the wall-floor as these are $$) "

included in whole building heat loss models. However, in-situ measurements might be affected by the wall-$$* "

floor junction heat-transfer Ð as expressed by the increased heat-flow in the perimeter areas. It is unclear $%+"

whether models and in-situ measurements are directly comparable, and while such model exclusion might $%!"

explain a disparity, a larger sample and measurement in actual floors in the field are required to investigate $%#"

any potential deviation between modelled and measured U-values in the wider housing stock. This is $%$"

especially important for the effective characterisation of the UKÕs existing housing stock to facilitate $%%"

appropriate retrofitting decision-making based on the estimated payback of retrofit measures1.$%&"

""""""""""""""""""""""""""""""""""""""""""""""""""""""""
! "This is illustrated with a simplified payback model for the case-study, based on West Pennines (15.5¼C) Heating 
Degree Days and floor insulation cost estimates of between £25 to £70/m2 when professionally installed and between 
£100 DIY [67] and 4 pence per kWh gas-heating cost, excluding standing charges and insulation grants. The yearly 
estimated energy cost associated with uninsulated floors is just £35 to £43 according to the modelled value, compared to 
£49 for the in-situ measured value. The payback of insulating floors is thus long (between 3 and 99 years depending on 
cost), especially when based on modelled U-values and professionally installed: 25 to 99 years payback when insulated 
to 2015 Building Regulation standard (U=0.25 Wm-2K-1) compared to 21 to 58 years when based on the actual in-situ 
measured value. The payback of a DIY-insulated floor might be as low as 3 years based on in-situ measurements, while 
4-5 years based on predictive models. "
 

"



"

3.5. Comparison of Salford EH observed floor U-values with other in-situ measured sources $%'"

Few in-situ measured U-values have been published for suspended timber ground floors in the UK. For $%("

semi-detached dwellings, Up-values estimated from in-situ measurements range from 0.69 to 2.4 Wm-2K-1, $%)"

based on just 5 sources, as listed in Table 3. Baker [11] and Snow [68] observed heat-flow in one location on $%*"

the floor; but their position relative to the perimeter is undisclosed. Stinson [69] measured one location on the $&+"

floor in the perimeter area. Miles-Shenton [70] on the other hand undertook measurements at three $&! "

locations, one in the perimeter/bay area and two in the central area of the uninsulated floor. The Up-values $&#"

presented by Miles-Shenton [70] are presented as a minimum to maximum range of instantaneous $&$"

calculated Up-values over the monitoring period rather than U-values derived by the ISO Average Method, as $&%"

the other sources, or as a final mean Up-value as was the case for the data presented here. Miles-ShentonÕs $&&"

Up-values indicate that as expected, the observed heat-flow in the bay was on average greater than when $&' "

measured in the middle of the floor.  $&("

In-situ measured  Up-values of un-
insulated suspended ground floor 
(point measurements, Wm-2K-1 ) 

Source & Notes  

1.19 
Semi-detached house in Derbyshire, ~45m2 ground floor with 
part of the floor in solid concrete [11]. 

2.4 ±0.2 
(measured in perimeter zone) 

Semi-detached house in Edinburgh, measured at the 
perimeter and floor surface to external environment [69, 71].  

2.3 
Scotstarvit Cottage, Fife; measured from air skirting level to 
external. No further details [68]. 

1.19 ~ 1.93 
(measured in perimeter/bay zone) Temple Avenue, York, 1930s house semi-detached; internal 

air to external environment; U-value ranges are based on 
calculated daily averages [70]. 

0.69 ~ 1.44 
(measured in central floor zone) 

 
Table 3. In-situ measured  Up-values of un-insulated suspended ground floor (point measurements) $&)"
 $&*"
 $'+ "

Up-values listed in Table 3 highlight the wide variation of heat-flow observed for measurements taken on $'! "

buildings in different locations, with some overlap with the findings here. However, the reported field studies $'# "

appear to have higher estimated Up-values, especially along the perimeter zone. The differences may relate $'$ "

to the differences in environmental conditions or physical form and materials and higher expected variations $'%"

in the field; constraints associated with the use of the EH are discussed in section 2. Differences between $'& "

the case-study buildings include the sub-floor material properties (concrete in the EH), ventilation rates, floor $'' "

finishes, void depths, wall thermal performance and environmental conditions. These variables affect $'( "

measured floor heat-flow differently, hence comparison between findings from different studies is $') "

challenging. Furthermore, the large spread of in-situ heat-flow observed across the floor in this case-study, $'* "

highlights that using a few point measurements is unlikely to represent the entire floorÕs Uwf-value. Estimating $(+ "



"

the performance of the whole floor by measurements taken in one or two locations may systematically over- $(! "

or under- estimate floor Uwf-values. As monitoring in perimeter locations is generally used in occupied $(# "

dwellings for practical reasons, this could lead to over-estimation of Uwf-values. This raises a question about $($ "

the estimation of Uwf-values from in-situ Up-value measurements and its importance for comparison to $(%"

literature and models, which are based on whole floor U-values, not point measurements. It is clearly $(&"

important to undertake and interpret the results of in-situ monitoring campaigns with care and transparency. $(' "

Moreover, differences in methods further challenge the comparison between estimated floor U-values $(( "

presented in different sources. For example, placement of temperature sensors is not the same in each $() "

study; air temperatures in rooms are inhomogeneous, leading to vertical temperature gradients [51, 72, 73], $(* "

affecting U-value estimates as they depend on the temperature gradient Ð more research is required.  $)+ "

4. Conclusions and further research  $)! "

Suspended timber ground floors are the main floor construction in up to 10 million dwellings in the UK [16], $)# "

and the upgrade of these floors could contribute to reduced energy use in the residential sector [8]. $)$ "

Insulating suspended timber ground floors was an approved measure under the Green Deal [41], yet $)%"

currently their performance is not well characterised. This research undertook unique high-resolution floor U-$)&"

value measurements in a controlled environment at the Salford Energy House. Our results highlight the $)' "

value and necessity of high-resolution monitoring techniques compared to the generally available low $)( "

resolution measurements on construction surfaces.  This high-resolution monitoring in 15 floor locations $)) "

produced a high variability of Up-values between 0.56 ±0.05 and 1.18 ±0.11 Wm-2 K-1, depending on location. $)* "

In general, it was found that the observed Up-values were greatest near the airbricks and along the exposed $*+"

external wall perimeter, which reflects physical theory and solid ground floor research (see section 3.2.). $*! "

Additionally, high resolution monitoring revealed that the thermal behaviour of floors is complex and affected $*# "

by a number of environmental and structural factors (such as joist direction and depth affecting heat flow), $*$ "

which are excluded from predictive models and payback calculations. $*%"

 $*&"

The in-situ U-value of suspended timber ground floors in the wider population might be different from $*' "

published or modelled values, as was observed for this case study: depending on input assumptions, the $*( "

measured Uwf-value was!12% to 28% higher than the modelled U-values of 0.58 to 0.71 Wm-2K-1.. However, $*) "

it is unclear how robust comparisons are between measured and modelled values and further research is $** "

required to determine whether the modelled underestimation of actual floor U-values is reflective of the %++"

wider stock. Our findings also highlighted that estimating and comparing representative U-values for %+!"



"

suspended timber ground floors from just one or a few in-situ point measurements has significantly %+#"

increased uncertainties: only 43% of the individual U-value point measurements and just 30% of paired Up-%+$"

values would give a whole floor in-situ estimated U-value (Uwf) within the margins of error of the floorÕs %+%"

estimated Uwf of  0.83 ±0.08 Wm-2 K-1 (excluding joist presence). This highlights the potential impact of heat-%+&"

flux sensor location on U-value estimation. The observed large spread of floor Up-values has significant %+'"

implications for in-situ measuring techniques of these floors: where to take point measurements on the floor %+("

and how to average these point measurements to derive a representative Ôwhole floorÕ U-value? It also leads %+)"

to comparison difficulties with predictive models and with other in-situ sources. Addressing these challenges %+*"

needs to be a priority because validation of U-values is essential to confirm pay-back and carbon reduction %!+"

estimations of intervention measures especially considering that for practical and resource reasons, in-situ %!! "

measurements have been usually limited to just a few point measurements in occupied houses. Fabric-%!#"

efficiency policies need to have a sound empirical validation to allow practical decision-making and to be %!$"

successful. .  %!%"

 %!&"

Nevertheless, these findings indicate that observing one or a few measurements are unlikely to be %!' "

representative of the whole floor heat-flow while it could also lead to over-or underestimating the whole floor %!( "

U-value if taken to be representative of the entire floorÕs heat-flow. Unless in-situ measuring was specifically %!) "

set up to measure a sufficient and representative number of point measurements, a whole floor U-value, %!*"

which might be obtained from an area-weighted summation as per Eq. (3), cannot be derived with %#+"

confidence. Based on these findings, single point measurements in in-situ monitoring trials are likely to have %#!"

a significant location bias and for suspended timber ground floors, high resolution measuring methods %##"

should be used to avoid such bias. In addition the issue of a low or high-resolution sampling strategy that we %#$"

identified is likely to be also relevant for in-situ measurements of other elements and not just for floors. %#%"

Improving the characterisation of the heat-flow and its variability through real floors from high-resolution in-%#&"

situ measurements will facilitate a more accurate prediction of the current performance and support a more %#'"

accurate prediction of the impact of interventions in support of carbon reductions in the housing stock.  %#("
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