Diblock polyampholytes grafted onto spherical particles : effect of stiffness, charge density, and grafting density

Akinchina, A ORCID: https://orcid.org/0000-0002-6837-6069 and Linse, P 2007, 'Diblock polyampholytes grafted onto spherical particles : effect of stiffness, charge density, and grafting density' , Langmuir, 23 (3) , pp. 1465-1472.

[img] PDF - Published Version
Restricted to Repository staff only

Download (372kB) | Request a copy

Abstract

The structure of spherical brushes formed by symmetric diblock polyampholytes end-grafted onto small spherical particles in aqueous solution is examined within the framework of the so-called primitive model using Monte Carlo simulations. The properties of the two blocks are identical except for the sign of their charges. Three different chain flexibilities corresponding to flexible, semiflexible, and stiff blocks are considered at various polyampholyte linear charge densities and grafting densities. The link between the two blocks is flexible at all conditions, and the grafted segments are laterally mobile. Radial and lateral spatial distribution functions of different types and single-chain properties are analyzed. The brush structure strongly depends on the chain flexibility. With flexible chains, a disordered polyelectrolyte complex is formed at the surface of the particle, the complex becoming more compact at increasing linear charge density. With stiff blocks, the inner blocks are radially oriented. At low linear charged density, the outer blocks are orientationally disordered, whereas at increasing electrostatic interaction the two blocks of a polyampholyte are parallel and close to each other, leading to an ordered structure referred to as a polyampholyte star. As the grafting density is increased, the brush thickness responds differently for flexible and nonflexible chains, depending on a different balance between electrostatic interactions and excluded volume effects.

Item Type: Article
Schools: Schools > School of Environment and Life Sciences > Biomedical Research Centre
Journal or Publication Title: Langmuir
Publisher: ACS Publications
ISSN: 0743-7463
Related URLs:
Depositing User: A Akinshina
Date Deposited: 03 Mar 2017 09:35
Last Modified: 16 Feb 2022 18:16
URI: https://usir.salford.ac.uk/id/eprint/41438

Actions (login required)

Edit record (repository staff only) Edit record (repository staff only)

Downloads

Downloads per month over past year