
��������	
��������������	����	��
�	�
�����������
��������	�����������


��������������������	���������������� !������
��"������	������#��$	�����%#��	����
���������	�����

����&''()�	)���'*+),,-+'	�
���
.+*++/.

����� ��������	
��������������	����	��
�	�������������
��������	��
���������


����	
� ��������������������	���������������� !������
��"������	������#��
$	�����%#��	��������������	�����

��������	������� "�
���


�������
 � 0"

���� ���	���

�������� 1�	
����
	���	
����	��������&�����&''�
	�)
�����)��)�2'	'���	��'3*43/'

������������� /+*5

6�"#�	
���	�	�����������	������������
��������������������6�	���
	������������)�7����������	����
����	�
���������(�������	�������	����������
	�����	
���������������	���������	������������������
��������������	���������%�������	�����	�����
���������
�����������
�
)�0���
������2�����
����
��	������������������������	������
��	��	��
)

8��������	�������	����	����	����������	������
���	

	�����������������
�
������������#���
	�����1������&��	�����%��
�����9
�����)��)�2)

mailto:library-research@salford.ac.uk


insects
Article

A Comparison of Deformed Wing Virus in Deformed
and Asymptomatic Honey Bees
Laura E. Brettell 1,�,*, Gideon J. Mordecai 2,3,4,�, Declan C. Schroeder 2, Ian M. Jones 3,
Jessica R. da Silva 5, Marina Vicente-Rubiano 6,7 and Stephen J. Martin 1

1 School of Environment and Life Sciences, The University of Salford, Manchester M5 4WT, UK;
s.j.martin@salford.ac.uk

2 Viral Ecology, Marine Biological Association, Plymouth PL7 5BU, UK; gidmor@MBA.ac.uk (G.J.M.);
dsch@MBA.ac.uk (D.C.S.)

3 School of Biological Sciences, University of Reading, Reading RG6 6AJ, UK; i.m.jones@reading.ac.uk
4 Department of Earth, Ocean & Atmospheric Sciences, The University of British Columbia,

Vancouver, BC V6T 1Z4, Canada
5 Centro de Ci¶ncias Agr¡rias, Ambientais e Biolâgicas, Universidade Federal do Recæncavo da Bahia,

Rua Rui Barbosa, 710 Centro, Cruz Das AlmasBahia State 44380-000, Brazil; r.jessicarosa@gmail.com
6 VISAVET, Faculty of Veterinary Science, Complutense University de Madrid, 28040 Madrid, Spain;

mvrubiano@vet.ucm.es
7 Animal Health Department, Faculty of Veterinary Science, Universidad Compultense de Madrid,

28040 Madrid, Spain
* Correspondence: l.e.brettell@edu.salford.ac.uk
� These authors contributed equally to this work.

Academic Editors: Steven Cook and Jay Daniel Evans
Received: 13 September 2016; Accepted: 2 March 2017; Published: 7 March 2017

Abstract: Deformed wing virus (DWV) in association with Varroa destructor is currently attributed to
being responsible for colony collapse in the western honey bee (Apis mellifera). The appearance of
deformed individuals within an infested colony has long been associated with colony losses. However,
it is unknown why only a fraction of DWV positive bees develop deformed wings. This study
concerns two small studies comparing deformed and non-deformed bees. In Brazil, asymptomatic
bees (no wing deformity) that had been parasitised by Varroa as pupae had higher DWV loads than
non-parasitised bees. However, we found no greater bilateral asymmetry in wing morphology due to
DWV titres or parasitisation. As expected, using RT-qPCR, deformed bees were found to contain the
highest viral loads. In a separate study, next generation sequencing (NGS) was applied to compare
the entire DWV genomes from paired symptomatic and asymptomatic bees from three colonies on
two different Hawaiian islands. This revealed no consistent differences between DWV genomes from
deformed or asymptomatic bees, with the greatest variation seen between locations, not phenotypes.
All samples, except one, were dominated by DWV type A. This small-scale study suggests that there
is no unique genetic variant associated with wing deformity; but that many DWV variants have the
potential to cause deformity.

Keywords: deformed wing virus; honeybee; Varroa; next generation sequencing; RTPCR

1. Introduction

Honey bees with deformed wings have become a universal sign for the presence of deformed
wing virus (DWV) in colonies infested by Varroa destructor across the world. DWV is reported as the
most important honey bee viral pathogen causing the death of millions of colonies across the northern
hemisphere [1,2]. However, the proportion of honey bees with deformed wings (i.e., symptomatic
bees) in a colony is normally low (<1%) despite a high proportion of asymptomatic honey bees being
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infected with high viral titres of DWV [3]. This is, in part, due to symptomatic bees dying as pupa or
within 48 h of emerging from their brood cell [4]. Although normally low, up to 66% of individuals
can have wing deformity in a severely infected colony [5], but these levels are rarely seen.

Wing deformity was originally believed to be caused by the removal of the developing bees’
haemolymph by the mites’ feeding activities [6]. Although deformed wings can occur due to
insuf�cient nutrition or �uids [7], there was a noticeable increase in the number of deformed bees
associated with Varroa infested colonies, which was later linked to the ability of Varroa to transmit
DWV to developing honey bees [7]. On the isolated island of Fernando de Noronha Varroa, mites have
been feeding on its honey bees for the past 32 years; unique to this population, DWV has remained a
low level covert infection. No bees with deformed wings have ever been recorded on the island [8�10],
indicating that the mites’ feeding activity does not directly cause wing deformity. However, although
both deformed and asymptomatic bees can have very high viral titres (�109) [11], deformed bees
have consistently higher DWV titres than asymptomatic bees [12,13]. It is not unknown for deformed
bees to contain lower than expected DWV titres (�104��107) [14]; this is a very rare occurrence
and could be a result of a different, external factor. It was suggested by Gisder et al. [15] that the
development of deformed wings was due to viral replication within the mite leading to a higher
delivery into the bee and that this may not occur in most mites. Furthermore, DWV appeared to be
present in the heads of deformed bees but only present in the thorax and abdomen of asymptomatic
bees [16]. However, subsequent studies have found DWV also in the heads of asymptomatic bees,
helping explain changes in their behaviour [17] and effects on their learning [18]. However, there is no
speci�c, proven etiology for the disease and the pathogenesis, and cytopathology of DWV has yet to
be directly studied. Alternate causes have been suggested: that deformity may arise as a consequence
of the bees’ immune response to mite feeding [19], or that microbial septicaemia occurs as a result of
microorganisms transmitted by Varroa [20], but the weight of evidence especially from the Fernando
de Noronha study [10], currently does not support these mechanisms [15,16,21,22].

DWV is a quickly evolving group of closely related viruses [23], which is commonly referred to
as a quasispecies [24]. This is made up of three master variants. Martin et al. [2] initially classi�ed
DWV as being composed of two master variants, type A which consists of DWV and Kakugo virus
(KV) [3,17] and type B which refers to the Varroa destructor virus-1 (VDV-1) which was �rst isolated
from Varroa [25], and was suggested to cause wing deformity [25,26]). Recently, type C, a third distinct
variant, has been discovered in asymptomatic bees collected in Devon, UK [27]. Both types A and B
are associated with disease symptoms [26,28], and are known to form recombinants [26] but the type A
variant is more commonly associated with infestation by Varroa and subsequent colony collapse [2,29].
Conversely, the dominance of type B in a population has recently been shown to prevent the virulent
type A becoming established and causing colony losses [30].

Recent work in colonies that have never been exposed to Varroa have shown that DWV consists
of a wide diversity of variants, but that transmission by Varroa causes the ampli�cation of dominant
DWV variants and a major reduction in the subsequent virus diversity in the honeybee [2,31]. Further
experimental manipulations have shown that this reduction in variant diversity occurs within the
bee, not the mite [31]. These studies were conducted using asymptomatic bees. The quasispecies
theory of viral evolution [32] may help to explain why only a small proportion of the bees become
deformed, since a particular DWV variant that is able to reproduce rapidly in both mites and bee
pupae may exist within the quasispecies infecting deformed bees, whereas a different variant could
dominate in asymptomatic bees. Alternatively, the lack of a dominant variant but high viral diversity
in asymptomatic bees could be hypothesised as the reason for the lack of development of the deformed
wing phenotype, but given the current data this seems less likely.

The aim of this study was to use RT-qPCR, High resolution melt (HRM) and next generation
sequencing (NGS) to determine if a particular variant was associated with wing deformity in honey
bees parasitised by the Varroa mite.
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2. Materials and Methods

2.1. Honeybee Samples

For the RT-qPCR viral quanti�cation and wing deformity study, honey bees were collected from
an apiary maintained by Universidade Federal do Recæncavo da Bahia (UFRB), Cruz das Almas
(12.67� S, 39.1019� W), Bahia state, Brazil. We con�rmed that the honey bees from this population were
infected by the type A variant of DWV (Supplementary Figure S1) as were the bees from Hawaii [2].
For the NGS study, we used previously collected samples of honey bees from Hawaii (collected in
2012). Three pairs of samples were chosen, each consisting of a single deformed bee and a pool of
30 asymptomatic bees from the same colony. Each colony had been exposed to Varroa infestations
for different lengths of time (Oahu = 5 years, Big Island East = 4 years, Big Island South = 3 years).
The rarity of bees with deformed wings in both populations made it impossible to compare similar
numbers of symptomatic and asymptomatic bees. The vast majority of adults with deformed wings
contain high DWV loads ([13], this study), whereas DWV titres in individual asymptomatic bees
are more variable [33], hence we used a pooled sample for the NGS study to ensure suf�cient DWV
genomes were present for sequencing.

2.2. Effect of Viral Load on Wing Deformity

In January 2015, in Brazil, a frame of an emerging brood was removed from three study colonies.
Each emerging bee, along with the cell that it was emerging from, was checked for the presence or
absence of Varroa mites. A total of 45 parasitised and 45 non-parasitised newly emerged worker bees
were collected from the three frames. Only bees seen emerging from a cell were used. However, no
emerging deformed bees were found despite 500 bees emerging from the frames. As such, a visual
search of the three study colonies was conducted that resulted in just three deformed bees being
located. As the vast majority of deformed bees develop from parasitised pupae [34], it is likely that
these individuals emerged from infested cells, which is supported by the high DWV titres we detected
(Figure 1). All bees were killed by freezing at �20 �C before their forewings were removed and
mounted on a glass slide for morphometric analysis. Individual bees were then labelled with a unique
label and shipped to the UK in a Dry Vapour Shipper at �186 �C for viral analysis. Each forewing
(length and width) was measured using a Leica binocular microscope (�10) magni�cation �tted
with a Leica camera. As these were newly emerged bees, no wing wear was present. As directional
asymmetry in wing size in honey bees is well established [35,36], we measured both wings of the
parasitised and non-parasitised groups and compared the results using a Mann�Whitney U test since
not all wing measurement distributions were normally distributed.

For the RT-qPCR analysis, a random subset of ten parasitised and ten non-parasitised newly
emerged asymptomatic bees were chosen along with the three deformed bees. Then each of the
23 individual bee samples was ground in liquid Nitrogen to a �ne homogeneous powder and 30 mg
material used for RNA extraction using the RNeasy mini kit (Qiagen, Venlo, The Netherlands),
according to the manufacturer’s instructions. Total RNA samples were quanti�ed using a Nanodrop
8000 (Thermo Scienti�c, Waltham, MA, USA). One microgram of isolated RNA was treated with
DNase I (Promega, Madison, WI, USA), followed by Nanodrop quanti�cation to standardise the
amounts of total RNA to 25 ng/�L, before storage at �80 �C.

Total RNA was analysed in duplicate for each sample using the one-step SensiFAST SYBR No
ROX One-step kit (Bioline, London, UK). RT-qPCR reactions contained 50 ng RNA, 1� SYBR one-step
Sensimix, 2.5 mM MgCl2, 5 units of RNase inhibitor, and 7.5 pmol of each primer: DWVQ-F1 and
R1 for DWV (primers bind within the RdRp gene) with Actin F1 and R1 as the reference gene [11]
(Supplementary Table S1). Reactions were run on a Rotor-Gene Q Thermocycler (Qiagen) with an
initial reverse transcription stage at 49 �C for 30 min and a denaturation step of 95 �C for 10 min,
followed by 40 cycles of denaturation for 15 s at 95 �C, annealing for 30 s at 54 �C for DWV, and 58 �C
for Actin, and extension for 20 s at 72 �C. The SYBR green signal was measured on the green channel
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after each extension step. A �nal dissociation melt curve was performed between 65 �C and 95 �C,
at 0.5 �C increments, each with a 10 s hold and acquisition to the green channel. The melt curve was
used to ensure that a single targeted product was ampli�ed, and that no contamination was present
in the reverse transcription negative controls or in the no-template controls. The threshold cycle (Ct)
value was determined for each sample using the QIAGEN Rotor�Gene Q Series Analysis software.
All samples were run in duplicate and the average was taken. Those samples which had a standard
deviation of �1 Ct were re-run to obtain duplicates with standard deviation <1 Ct. Each sample was
normalised against Actin, and then presented relative to the asymptomatic non-parasitised bees as
DDCt values. Statistical differences were calculated using a pair wise Mann�Whitney U test when the
data were not normally distributed.

2.3. Next Generation Sequencing, Assembly and Data Normalisation

RNA was again extracted from 30 mg of material from each of the six Hawaiian samples
(three colonies that each contained a single deformed bee and 30 asymptomatic bees) using the
RNeasy mini kit (see above). Total RNA was used for a cDNA ampli�cation step using oligo dT
priming followed by sequencing. Illumina sequencing (Hi-Seq 100 bp paired end reads) was carried
out by The Earlham Institute, Norwich. A Bioinformatics pipeline designed to accommodate the
large amount of variation found within DWV, �rst described in Mordecai et al. [30] was applied. This
involved using reads which mapped to a custom BLAST database of DWV master variants type A
(NC_004830.2 and Kakugo virus NC_005876.1), B (AY251269.2) and C (CEND01000001.1) database
using an e value of 10e�05 to assemble DWV-like contigs using VICUNA which was speci�cally
developed to deal with highly variable data. Read data were uploaded to the NCBI Sequence Read
Archive under study number SRP095247.

Viral contigs were imported into Geneious (Version 7.04, created by Biomatters, Aukland,
New Zealand) and the �Map to Reference tool� was used to align the contigs against the DWV
type A (NC_004830.2), B (AY251269.2) and C (ERS657949) reference genomes. These contigs were used
to assess the breadth of genome coverage (Figure 2) as well as to analyse the dominant variants in
each sample (Figure S3). The phylogenetic trees (Figure 3) were created within Geneious (Version 7.04,
created by Biomatters) using a Tamura-Nei Genetic Distance model and a neighbor joining tree building
method. In order to ensure that the contigs produced truly represented the viral populations, geneious
competitive alignments were performed in which the raw sequencing read 1 �les in fasta format were
competitively aligned against DWV types A, B and C reference genomes (allowing for 5% mismatches
and no gaps with reads with multiple best matches being discarded) to produce coverage graphs for
reads corresponding to each type.

To quantify the number of DWV reads in each sample, the number of reads unambiguously
mapping to each master variant were counted. These were then normalised against the number of
reads that matched to part of the Actin gene used for RT-qPCR by High�eld et al. [11] using the
geneious �map to reference� tool.

3. Results

3.1. Viral Quanti�cation and Wing Deformity in Honey Bees

All 23 individual bees from Brazil tested positive for DWV using RT-qPCR. HRM analysis
and Sanger sequencing indicated that all bees were dominated by the DWV type A (Supplementary
Figures S1 and S2). The highest loads were consistently detected in the three bees with wing deformities
(Figure 1b). This was followed by asymptomatic bees that had been parasitised by Varroa mites as
pupae. The lowest DWV loads were detected in asymptomatic bees that had developed free from
Varroa (non-parasitised bees). Due to the low viral load in the non-parasitised bees, primer dimer
was also ampli�ed along with the DWV RdRp diagnostic fragment and this would have led to an
overestimate in viral load, so the actual amount may be lower than shown. Despite these signi�cant
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differences in DWV load between the three groups, their wing morphology did not follow the same
trend. The bees with deformed wings had the highest viral load, as expected. However, no signi�cant
differences in wing length (Left wing, U = 668, Z = 1.21, p = 0.22: Right wing, U = 709, Z = �1.53,
p = 0.12) or wing width (Left wing, U = 694, Z = 0.91, p = 0.36: Right wing, U = 871, Z = 0.28, p = 0.78)
were found (Figure 1c,d) between the asymptomatic, non-parasitised and parasitised groups of bees.
In both groups, directional asymmetry was detected in wing length but not wing width. That is, the
bees’ left wing was signi�cantly longer than their right wing in both the non-parasitised (U = 493,
Z = 3.71, p = 0.0002) and Varroa-parasitised (U = 402, Z = �3.52, p = 0.0004) groups (Figure 1c).
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Figure 1. (a) Shows images of a normal forewing from a non-parasitised, parasitised asymptomatic,
and a deformed honey bee; (b) Deformed wing virus (DWV) load of non-parasitised, parasitised
asymptomatic, and deformed bees quanti�ed by DWVQ RT-qPCR. Delta delta Cycle threshold (Ct)
values normalised against an Actin gene control and non-parasitised asymptomatic bees; [11] and
relative to the non-parasitised asymptomatic bees, shown on a log scale (c) wing length and (d) width
of 45 non-parasitised (clear box blots), 45 parasitised (grey box plots) and three bees with deformed
wings (black box plots). Note the broken axis to deal with the large size differences between deformed
and normal forewings. ** p < 0.001 between right and left wings.
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3.2. Next Generation Illumina Sequencing

Each of the six samples from Hawaii contained suf�cient DWV reads to assemble into contigs that
together covered the entire length of the genome (Figure 2). Five of the six samples were dominated
by type A reads that yielded full genome coverage. However, a single asymptomatic sample from
Big Island East was found to be dominated by type B reads that yielded full genome coverage of the
type B genome (Figure 2). The breadth of type B coverage is less in the samples from Oahu where
Varroa has been present for a long time where the type A variant dominates. The read depth coverage
graphs for all samples showed a strong 3’ bias which can be attributed to the inherent 3’ bias of reverse
transcription produced using oligo dT priming in the library preparation [37]. The plots con�rmed that
the asymptomatic sample from Big Island East was the only one that contained type B read coverage
across the entire genome and that all others contained type B coverage at the 3’ end only (Figure 2).
The samples from Oahu did contain low amounts of type B reads, however there was insuf�cient read
depth for the assembler to produce contigs. The asymptomatic sample from Oahu contained a small
number of DWV type C reads (n = 359). Although type C was not the dominant variant, coverage was
suf�ciently high to assemble contigs spanning the majority of the genome. Very low numbers of type C
reads were found in other samples by counting reads unambiguously mapping to type C and were
used when normalising DWV variants to actin (Figure 2), however the read depth was insuf�cient to
generate type C contigs in any other sample. Although it is impossible to rule out that the DWV type C
identi�ed in this study is a result of contamination via barcode shifting originating from samples
dominated by type C run on the same �ow cell lane see [27], as evidenced by the divergent 3’ bias in
the type C read density for HB_S67 (Figure 2), we suggest the small number of sequence differences in
the HB_S67 assembled contigs are signi�cantly distinct compared to those in [27] (Table S2). However,
the presence of small amounts of type C in one sample is interesting but does not in�uence the �ndings
of this study.

Using the NGS data, both types A and B DWV Vicuna contigs were aligned across the entire
genome to look for differences that correlated with deformity. Despite this unprecedented level of
detail, there were no regions of the genome where all three deformed or asymptomatic samples
grouped together. Neighbor-joining trees were created to examine the phylogeny of DWV variants
sequenced and assembled using three regions of the DWV genome: a 4360 bp region spanning the
majority of the non-structural block including Helicase and 3C protease, and the majority of the RdRp
gene (Figure 3a); and two further regions, both 145 bp in length, that represent a portion of the RdRp
gene (Figure 3b and Figure S3a) and the Capsid region (Figure 3c and Figure S3b). The DWV variants
are split into the three master sequences; types A, B and C. The phylogenies show that within the
type A clade, deformed and asymptomatic samples from the same site never share the same dominant
variant of DWV. The low amount of genetic diversity within the type B clade can be attributed to the
low viral load.

Although, within each location, the sequences differed for deformed and asymptomatic samples,
the variation between colonies is always greater than that within each colony i.e., deformed vs.
asymptomatic. Interestingly, the asymptomatic Big Island (East) sample produced an RdRp contig
which contained elements of both A and B variants (Supplementary Figure S3a, HB_S21 contig 1)
indicating a possible recombination between variants. This was removed prior to creating the
phylogeny (Figure 3b). Another possible A�B recombinant was also observed in the deformed Oahu
sample within the Helicase gene (Figure 2). However, we could not con�rm the precise recombination
junction site due to the lack of speci�c reads covering this region.
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Figure 2. Genome coverage from the Illumina Hi-Seq data for the Hawaii colonies including a map
of the DWV genome adapted from Lanzi et al. [3]. DWV type A, B and C genomes (in red, blue
and yellow respectively) were assembled from the Illumina next generation sequencing (NGS) data
from honeybees from Hawaii. DWV load was normalised to Actin. Breadth of genome coverage by
Vicuna contigs is shown against the DWV genome for type A, B and C variants, as well as individual
competitive alignment read depth coverage plots.
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of type B sequences can be attributed to a low viral load. At no gene location do the deformed and
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4. Discussion

Although it is well known that DWV can cause wing deformity in infected individuals, the
reason for those symptoms affecting only a small proportion of infected individuals remains poorly
understood. Morphometric analysis carried out in this pilot study revealed wings to be either deformed
or not (asymptomatic) with no intermediate phenotype. Despite a signi�cant increase in DWV type A
load detected using RT-qPCR, no signi�cant differences in wing length were seen between bees that
had been parasitised as pupae and those which had not. Furthermore, directional asymmetry is
common in honey bees ([35,36,38], this study), and �ies [39], and is commonly regarded as a sensitive
indicator of developmental perturbation [38]. However, directional asymmetry was not affected by an
increased DWV load as might be expected.

The Varroa mites’ ability to act as a vector and host of DWV [16,40], by providing an alternative
transmission route; directly inoculating virus particles into the haemolymph, helps explain the higher
DWV load in parasitised bees relative to non-parasitised bees [4,31]. The presence of DWV in the
non-parasitised group indicates that an active non-mite transmission route must also be present,
most likely via horizontal transmission (the brood food) [16] and/or by vertical transmission from
queen to egg [41]. Varroa may indirectly impact this �non-mite� transmitted DWV population by
increasing the amount of DWV circulating within the honey bee population. A previous study by
Teixeira et al. [42], found DWV in approximately 20% of adult bees’ abdomens in Brazil, while in
2015, 100% of individuals were positive for DWV [this study]. An increase in Brazilian bees with
deformed wings has not been reported, despite colonies hosting mite populations of up to 3500 [43].
Mites entering brood cells normally have very low DWV loads relative to those leaving cells 12 days
later [33] potentially as a result of viral replication within the mite [15]. However, DWV is continually
passed between the bee and mite during regular bouts of feeding [40] and potentially replicates in both.
The host in which predominant ampli�cation occurs remains unclear. A recent study demonstrated the
absence of non-structural and high abundance of structural proteins in Varroa, suggesting that DWV
proteins accumulated in the gut after feeding and not as a result of viral replication in the mite [44].
However, studies using FISH (Fluorescence in situ hybridization) probes or immunohistochemical
techniques may help resolve this uncertainty. At the present time, it is dif�cult to say whether the
high viral load in bees is a symptom of being parasitised by a mite carrying a high viral load, or if the
mites have a high viral load because of a high level of viral replication in the bee on which the mite is
feeding. As a result, there is no clear explanation for why only a small proportion of parasitised bees
develop deformed wings. A study by Bowen-Walker et al. [7] found that when transferring mites from
pupae which developed deformed wings to new host pupae, the majority but not all of the new pupae
went on to develop deformity. Further experiments are required to repeat this work.

We hypothesised that a speci�c variant within the quasispecies causes deformity through either
an increased ability of speci�c sequences to replicate in the bee, or potential tissue tropism of certain
variants. Analysis of NGS data showed there to be no consistent differences between deformed and
asymptomatic bees in terms of the dominant DWV consensus genomes. In addition, inter-colony
variation was always larger than intra-colony variation i.e., between deformed and asymptomatic bees.
However, as previously reported [3,45], the DWV infection of deformed bees was always dominated
by the type A master variant. This suggests that a �deformed phenotype variant� of type A is unlikely
since it is also present in asymptomatic bees. We suggest that the alteration of the DWV variant
landscape (e.g., by Varroa), which differs from that already present in the hive may result in disease
progression. Recombinants of types A and B have previously been proposed to result in a virulent
infection [31], however this was not seen here and has not since been shown in other populations. We
did �nd recombinants between types A and B, however they were not dominant in the samples. Their
low load, and resulting low genetic diversity, as observed in the phylogeny, indicates a low level of
replication and thus virulence. Although no clear link between DWV genomes and deformity was
detected, Vicuna consensus contigs within the RdRp segment were consistently different in each pair
of samples from each location (Figure 3b and Figure S3a), suggesting that many variants have the
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potential to cause wing deformities. The Fernando de Noronha study [9] has helped support ideas that
wing deformity is not caused by the direct effects of mite feeding or haemolymph extraction, and this
study failed to �nd any unique DWV variant linked with deformity. So currently, the only consistent
factor associated with deformed wings is the high DWV load, but it remains unclear if the high load
causes deformity or results from another factor that initially causes the deformity. As such, future
work is needed on a larger scale with the investigation of additional considerations to ascertain the
in�uence of other factors on the development of deformity.

5. Conclusions

These two pilot studies aimed to ascertain whether there was a speci�c DWV variant within the
replicating quasispecies which was associated with the development of the deformed wing phenotype.
Using a combination of NGS, RT-qPCR and HRM, we con�rmed that DWV type A dominated in
all samples although types B and C, as well as A/B and A/C recombinants were also found to be
replicating at lower levels. Signi�cantly, there was no clustering between deformed samples and
asymptomatic samples, indicating that no unique DWV variant is associated with wing deformity.
Furthermore, we found that neither DWV load nor dominant variant correlated with wing asymmetry
which might have been expected given the fact that wing asymmetry is often used as an indicator of
developmental perturbation. This study indicates that no speci�c genomic pattern of DWV can be
used in predicting wing deformities in honey bees.

Supplementary Materials: The Supplementary materials are available online at http://www.mdpi.com/2075-
4450/8/1/28/s1. Figure S1: High Resolution melt plot of DWV RdRp RT-PCR products ampli�ed from Brazilian
deformed bees (red) and asymptomatic bees from cells infested with (yellow) and without Varroa (green). All melt
peaks are in the predicted DWV type A variant region (78.5�C�82�C); Figure S2: Multiple sequence alignment
(Geneious 8.1.7, Biomatters) of sequenced RdRp RT-PCR products ampli�ed from Brazilian bee samples and used
for HRM analysis (Figure S1) mapped to DWV type A. Deformed bee samples are highlighted red, asymptomatic
bees from cells infested with Varroa are yellow and without Varroa are green, as in Figure S1. Nucleotides that
differ to the reference sequence are highlighted. Sequences are also included for the Type B and Type C genomes
for comparison; Figure S3: Multiple sequence alignment of DWV Type A (NC_004830.2), B (AY251269.2) and C
(ERS657949) reference sequences with contigs assembled by Vicuna in the (a) RdRp region and (b) Capsid encoding
region of the DWV genome. Nucleotides that differ to the DWV type A reference sequence are highlighted. DWV
type A, B and C sequences are highlighted in red, blue and yellow respectively; Table S1: The primers used for
RT-qPCR in this study; Table S2: Degree of similarity calculated using a global alignment between the DWV type
C genome previously described and the type C contigs assembled from sample HB_S67 in this study.
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