University of

Salford

MANCHESTER

Acoustics of multiscale sorptive porous
materials

Venegas, R, Boutin, C and Umnova, O
http://dx.doi.org/10.1063/1.4999053

Title Acoustics of multiscale sorptive porous materials

Authors Venegas, R, Boutin, C and Umnova, O

Publication title Physics of Fluids

Publisher AIP Publishing

Type Article

USIR URL This version is available at: http://usir.salford.ac.uk/id/eprint/44162/
Published Date 2017

USIR is a digital collection of the research output of the University of Salford. Where copyright
permits, full text material held in the repository is made freely available online and can be read,
downloaded and copied for non-commercial private study or research purposes. Please check the
manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please
contact the Repository Team at: library-research(@salford.ac.uk.



mailto:library-research@salford.ac.uk

1 Acoustics of multiscale sorptive porous materials

2 R. Venegas,™® C. Boutin,»® and O. Umnova® ©

3 D Université de Lyon - Ecole Nationale des Travauz Publics de I’Etat -

4 LGCB/LTDS - UMR-CNRS 5513, Rue Maurice Audin, 69518 Vaulx-en-Velin,

5 France.

6 2 Acoustics Research Centre, University of Salford, 43 Crescent, M54 WT Salford,
7 United Kingdom.

5 (Dated: 11 June 2017)

This paper investigates sound propagation in multiscale rigid-frame porous materials
that support mass transfer processes, such as sorption and different types of diffusion,
in addition to the usual visco-thermo-inertial interactions. The two-scale asymptotic
expansion method of homogenization for periodic media is successively used to derive
the macroscopic equations describing sound propagation through the material. This
allowed us to conclude that the macroscopic mass balance is significantly modified by
sorption, inter-scale (micro- to/from nanopore scales) mass diffusion, and inter-scale
(pore to/from micro- and nanopore scales) pressure diffusion. This modification is
accounted for by the dynamic compressibility of the effective saturating fluid that
presents atypical properties that lead to slower speed of sound and higher sound at-
tenuation, particularly at low frequencies. Contrarily, it is shown that the physical
processes occurring at the micro-nano scale do not affect the macroscopic fluid flow
through the material. The developed theory is exemplified by introducing an analyt-
ical model for multiscale sorptive granular materials that is experimentally validated
by comparing its predictions with acoustic measurements on granular activated car-
bon. Furthermore, we provide empirical evidence supporting an alternative method
for measuring sorption and mass diffusion properties of multiscale sorptive materials

using sound waves.
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o I. INTRODUCTION

1w Sound propagation in sorptive porous materials with multiple scales of heterogeneities,
u i.e. multiscale sorptive porous materials, is investigated in this paper. Sorption is a general
12 term used to refer to adsorption, desorption, and absorption (penetration of the fluid into
13 the solid phase). The former is a physical or chemical process in which the fluid molecules
1 are adhered on to a surface. Adsorption can also be understood as an increase of fluid
15 density in the vicinity of a fluid-solid interface. Desorption is the opposite phenomenon,
16 i.e. the fluid molecules are released from a surface. The molecules adherence in physical
17 adsorption is caused by weak van der Waals forces, while their release by either an increase
15 of temperature or a decrease in pressure which leads to a break of the weak physical bond!.
19 Adsorption/desorption is accompanied by mass diffusion that governs the flux of molecules

20 from a region of higher concentration to one of lower concentration®.

a1 The microstructure of multiscale sorptive materials features pores or inclusions of very
2> dissimilar characteristic sizes ranging from nanometers to millimeters. An example of this
23 type of materials is a packing of porous grains in which the grains themselves feature two
a scales of heterogeneities, i.e. a triple porosity sorptive material. It will be demonstrated
25 in this paper that their distinctive characteristic is the simultaneous occurrence of sorption
26 processes at the smallest scale, different inter-scale diffusion processes, and visco-thermal
o7 effects at different scales. Materials of interest that possess hierarchical microstructure and
2 support the mentioned physical processes include activated carbons?, zeolites®, and metal-

2 organic frameworks?*, for example, in granular and pellet form.

s The investigation of mass transport and sorption in multiscale porous materials is of
a1 interest, for example, in geophysics and gas engineering. For instance, in Ref. 5 the solute
» transport in fractured sorptive porous media was investigated. In Ref. 6, gas filtration in
33 porous coal and the effect of gas constrained in nanometric pores was studied with the aim of
s understanding the physical mechanisms leading to coal-gas outbursts in coal mines. In Ref.
55 7, a dynamic model for mass transfer in coal seams with application to CO2 sequestration
s was investigated, while Ref. 8 dealt with the behavior of gas flow in multi-porosity shale

37 Zas Teservoirs.

s On the other hand, multiscale sorptive porous materials are widely used in chemical

% engineering applications such as filtration, gas storage, and catalysis, among others!™?. For



w0 these applications, it is of interest to assess the sorption and diffusion properties of the
s materials. A measurement method, called frequency response!’!2 has been used to this
2 end. This method aims at measuring the mass diffusion and sorption parameters of porous
3 materials and is based on periodically perturbing the equilibrium of a system. For example,
s in a batch system it is normally considered a slow periodic change in volume of a container
s in which the sorptive material is placed. This change in volume leads to a slow periodic
s change in pressure that is recorded and further used to obtain the material parameters
a7 by fitting a theoretical model to the data. Of these models, the ones described in Refs.
s 13-15 for bidispersed structured sorbents are relevant to the present work. Their common
w0 features are: (i) the mass transport in both pore networks is modeled as a Fickian diffusion
so process, (ii) equilibrium between fluid and sorbed phases in the pores and linear isotherms are
s considered, and (iii) they are usually applied to describe diffusion and sorption in granular
s> materials made by agglomerating porous microparticles (or crystals). In particular, the
s3 justification of (i) is the experimental condition normally used in the frequency response
s« method: the measurements are taken at low pressures. At normal conditions, the mass
ss transport in the pores formed in between millimeter-size inclusions is not of diffusive but
ss advective type. This has been accounted for in Refs. 16 and 17 where sound propagation
s7 in a slit pore formed between two infinite nanoporous sorptive plates and in an array of
ss cylindrical pores embedded in a nanoporous sorptive matrix were theoretically investigated,
so respectively. These works aimed at extending the working frequency range of the frequency
e response method and the structures studied can be considered as single-pore and double

61 porosity sorptive materials.

&2 In acoustics, the influence of sorption on sound propagation in a single tube has been
63 investigated in Refs. 18 and 19. The main conclusion in Ref. 19 is that the contribution
s to sound energy dissipation due to viscosity, heat transfer, and mass diffusion are additive.
s Experimental work on the acoustical properties of granular activated carbon (GAC) has

20 or a Helmholtz resonator cavity?!

s evidenced that partially filling a loudspeaker enclosure
e with GAC leads to an increase of their effective compliance. In addition, it has been shown
ss that rigidly-backed layers of GAC display unusually large low frequency sound absorption

21723 The characteristic feature of activated carbons is that the low-frequency

so coefficient
70 effective compressibility of the saturating gas attains values larger than the isothermal one

7z predicted by the current theory of acoustics of porous media?3. It was suggested in Ref. 23



722 that this behavior may be explained by considering an additional scale to the double porosity
73 model introduced therein, as well as by accounting for sorption processes. This idea was
72 developed further in Ref. 24 where rarefied gas flow in pores with size comparable to the
75 molecular mean free path and sorption effects in nanopores were included into a model for
76 sound propagation in granular activated carbon. One of the limitations of this model is that
77 the inter-scale (inner-grain micro to/from nano pores) mass diffusion was assumed quasi-
7 static. Hence, the model cannot be used to assess the influence of dynamic inter-scale mass
7o diffusion on the acoustical properties of triple porosity sorptive materials. Furthermore,
g0 since this model was introduced in a phenomenological manner, its range of validity is not
a1 clearly identified. Recently, an upscaled model for sound propagation in double porosity
g2 sorptive materials has been developed in Ref. 25. This model cannot be used to describe
&3 the acoustical properties of triple porosity sorptive materials. The limitations of these two
& works are overcome in this paper. The aim is to describe the acoustical properties of a wide

g class of sorptive porous materials.

ss  The first objective of this paper is to present a rigorous derivation of the macroscopic
g7 description of sound propagation in multiscale sorptive porous materials by making succes-
ss sive use of the two-scale asymptotic method of homogenization for periodic media?¢-?”. The
g0 application of this method leads to an upscaled model whose range of validity is clearly
o identified. The upscaled model accounts for viscosity and heat transfer effects at the pore
a scale, rarefied gas flow and heat transfer at the micropore scale, inter-scale (pore to/from
o2 micro-nanopore scales) pressure diffusion, inter-scale (micro- to/from nanopore scales) mass

s diffusion, and sorption at the nanopore scale. The developed theory applies to materials

©

o saturated with a pure gas. Typical examples may be the system nitrogen/granular acti-
s vated carbon, zeolites or metal-organic frameworks, which could approximate the acoustic

o behavior of this type of materials saturated with air.

o7 The second objective of this paper is to determine the combined influence of sorption,
e rarefaction, and dynamic inter-scale diffusion processes on sound propagation through triple
o porosity sorptive materials. Crucially, it is demonstrated that sorption effects occurring in
100 pores of nanometer size strongly modify the macroscopic mass balance. This modification is
1 accounted for by the compressibility of the effective saturating fluid, which displays uncon-
102 ventional properties that result in a slower speed of sound and higher attenuation of sound

103 in the material. The strength of these macroscopic effects in the audible frequency range
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104 largely depends on the dynamic pressure and mass diffusion properties of the material. This
10s cannot be properly assessed using the models developed in Refs. 24 and 25 due to their
s limitations discussed above. Contrarily to sorption effects, it is shown that the effects of rar-
w7 efied gas flow in pores with size comparable to the molecular mean free path only intervene
108 in the macroscopic acoustic behavior indirectly via a modification of the apparent pressure
o diffusivity. Furthermore, it is proven that, under the conditions established by homogeniza-
10 tion and in coherence with our previous studies?®?*, the constitutive fluid flow law and its
m associated effective parameter, i.e. the dynamic viscous permeability, are not modified by
n2 the physical processes occurring in the micro and nano pores.

u3  The strong combined influence of sorption and mass diffusion on the acoustical properties
us of the materials is measurable. Hence the third objective of this paper corresponds to
us the use of acoustic measurements on macroscopic samples to deduce physical parameters
ue characterizing sorption, that occurs at the nanoscale, and the effective diffusivity determining
uz the inter-scale mass diffusion. This may provide a simple alternative procedure to measure
us the sorption and diffusion properties of multiscale sorptive materials. We provide empirical
n9 evidence supporting this claim and validate the developed theory experimentally.

120 The paper is organized as follows. The macroscopic description of sound propagation in
121 multiscale sorptive porous materials is presented in Section II. The analysis of the effective
122 parameters of the upscaled model follows. An analytical model for sound propagation in
123 multiscale sorptive granular material is introduced in Section IV. This is further used in
124 Section V to exemplify and experimentally validate the theory. The main findings are

s summarized in the conclusions.

s II.  SOUND PROPAGATION IN MULTISCALE SORPTIVE POROUS
17 MATERIALS - THEORY

128 This section deals with the derivation of the macroscopic equations that describe sound
129 propagation in multiscale sorptive porous materials. The upscaling is done using the two-
130 scale asymptotic method of homogenization for periodic media?®2”. The material geometry
131 and the main assumptions regarding its morphology are discussed first. We then focus on
132 the case of a multiscale sorptive material with well separated macro, meso, micro and nano

133 scales. This allows applying the upscaling method to the set of equations that describes



134 the acoustic behavior in the pore fluid network, where viscosity and heat transfer effects
13s take place, and in the micro-nano porous domain. The latter is modeled as an equivalent
13 continuum and accounts for viscosity and heat transfer effects at the micropore scale, inter-
137 scale mass diffusion characterized by the micropore geometry and two diffusion processes
138 (i.e. bulk and surface diffusion) occurring in the nanopores, and sorption on the walls of the
130 nanopores. The effective equations governing sound propagation in the micro-nano porous
1o domain have been derived in Ref. 25. We present in Appendix A the main steps of the
1 derivation as well as its extension to account for rarefied gas flow and heat transfer in pores

12 with size comparable to the molecular mean free path.

w3 A.  Geometry

us  Consider a periodic multiscale sorptive rigid-frame porous material saturated with a pure
us Newtonian fluid. Figure 1 shows a diagram of the scales of the material and the relevant
us geometrical descriptors. The macroscopic characteristic length L is related to the sound
17 wavelength A\ through L = jAj /27 and strongly exceeds all other characteristic lengths of
us the material. The representative elementary volume (REV) of the material is denoted as €2,,.
1 This is constituted by the volume of the pores €2,f and the volume of the micro-nano porous
150 domain €y, i.e. €, = Qpr [ Q. The solid part of €2, is assumed perfectly impervious
151 to gas transport. The surface of the pores is denoted as I',. The micro-nano porous domain
152 ()., has a REV (2,,, that comprises the volume of the micropores €2,y and that of the nano
153 porous domain €2, i.e. Q,, = Q,,r [ 2,. The surface of the micropores is denoted as I',.
15+ In turn, the nano porous domain is composed of the volume of the nanopores €2, and the
155 volume of its impervious solid part. The surface of the nanopores is represented by I',,.

157 The characteristic length associated with the pore (or the period of the material), mi-
158 cropore, and nanopore scales are denoted as [, [, and [,, respectively. These are well
150 separated, i.e. [, << [, << [,, and for the materials of interest are usually millimetric,
150 micrometric, and nanometric in size (see e.g. Ref. 9).

16 Because of the separation between the pore and micropore scales, i.e. [, /l, << 1, the

8. Similarly,

162 micro-nano porous domain €2,,,, can be modeled as an equivalent continuum?
163 since the characteristic size associated with the nanopore scale is much smaller than that

16« associated with the micropore scale, i.e. [,/l,, << 1, the nano porous domain can be
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FIG. 1. Diagram of the scales of a multiscale sorptive porous material.

165 considered as an equivalent continuum governed by effective equations that are defined in

%5: sorption occurring

166 the whole domain €2,, and reflect the following local physical processes
17 on the walls of the nanopores, volumetric diffusion of free gas molecules in the bulk of the
18 nanopores, and surface diffusion of the adsorbed molecules. The diffusion processes are
160 Tespectively represented in Figure 1 by the horizontal dashed gray and black lines, while
1o the mass exchange between the gas (hollow circles) and adsorbate (black circles) phases is
1 depicted with vertical lines with arrows. The adsorbate volume is estimated by Q, = jI',,jNd,
12 where N is the number of adsorbed layers and d is the diameter of the molecules. These are
113 respectively assumed equal to unity (i.e. N = 1, monolayer coverage) and smaller than the

17 nanopore characteristic size (i.e. d < l,,). The void space available for the transport of free

175 molecules is represented by €2,. Hence one has that €2, = €, [ €.

17s The porosity of the material is ¢ppn = ¢p+(1 0p)(Pm+ (1 ém)pn), where ¢, = /€2,

177 G, = Qg /i, and @, = 2,5/, are the porosities associated with the pores, micropores,

J
J

1

3

s and nanopores, respectively. In turn, the porosity of the pores and micropores is ¢, =

¢p+ (1 ¢p)pm, while that of the micro-nano porous domain is ¢y, = @ + (1 @) b0

1

3
©

1o The disparity in length scales between the pore size and the macroscopic characteristic

1

[

1 size associated with the acoustic phenomenon provides a small parameter € = [,/L << 1.
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12 B. Governing equations at the pore scale

s The equations describing sound propagation in the pore fluid network are?*32: the lin-
184 earized equations of conservation of momentum (1), mass (2), and energy (3); and the
185 equation of state (4). The physical parameters involved are the dynamic viscosity 7, spe-
186 cific heat capacity C),, thermal conductivity s, and equilibrium pressure Fy, density pg, and
17 temperature 7. The oscillating velocity, pressure, density, and temperature are denoted as
188 Uy, Pp, Pp, and 7,, respectively. Note that harmonic dependence of the type e/*! is assumed

19 and, because of linearity, this term is omitted throughout the paper.

nr2up rp, = jwpou, in (1)

190
Jwpp +po¥ uw, =0 in Qpy, (2)

191
KF 1, =jwCppeT, jwp, in Q, (3)

192

Pp Pp |, Tp .

—=—=4 = in Q. 4
Py Po  To v/ ()

13 The equations governing sound propagation in the micro-nano porous domain, which is
1e modeled as an equivalent continuum, have been derived in Ref. 25 for the case of negligible
105 rarefaction effects in the micropores. We extend this model in Appendix A to account for
105 these effects. The derived effective equation of conservation of mass (5) and dynamic Darcy’s
107 law (6) are given by:

r U, + jwpnCun(w) =0 in Q,, (5)
ki (w)

198

190 where p,, is pressure in the micropores, U,, is the Darcy’s velocity, k,,(w) is the dynamic
200 Viscous permeability associated with the micropores and C,,,,(w) is the compressibility of the
201 effective fluid saturating the micro-nano porous domain (hence the subscript mn). Explicit
202 expressions for the latter two parameters will be given further below.

203 Eqgs. (1)-(6) are coupled via the following conditions on the pore boundary I', expressing
20¢ the continuity of normal mass flux (7) and pressure (8), and of negligible temperature

205 variations (9). Note that n is the outward-pointing normal vector (see Figure 1).

pou, n=pU, n on I, (7)

206

Pp =Pm OI Fpa (8)

8



207

7,=0 on I, 9)

28 Together with the boundary condition (7), it is set that the tangential mass flux is zero,
200 i.e. po(u, (u, mn)n) = 0. In addition, by considering the continuity of heat flux and its
20 estimation® k7, /l, = K7, /l;m, one obtains 7, = 1,,7,/l,. Then, the variation of temperature
au in the pores is much larger than that in the micropores, i.e. 7, >> 7,,, and the condition

22 Eq. (9) is thereby justified.

213 C.  Homogenization procedure

za The scale separation between the pore and macroscopic characteristic sizes, i.e. l,/L =
25 € << 1, allows us to use the two-scale asymptotic expansion method of homogenization for
216 periodic media to derive an equivalent macroscopic model. To represent the evolution at
217 the two spatial scales, the following dimensionless space variables x/L = X and x/l, =Yy
21 are introduced, where x stands for the usual space variable. These dimensionless space
210 variables are associated with the variations at the local and macroscopic scales, respectively.
20 Equivalently, taking L as reference length, we will use the following two dimensional space
21 variables X = LX andy = Ly = XL/l, = ¢ 'X. Then, the usual gradient operator I is
22 given by Iy = r,+¢ 'r, (and r%xy) = r;+2 'ry,+e *r;). Note that for simplicity
223 in the notation, we have used non-bold letters for the spatial variables.

24 The use of two space variables should be combined with a rescaling of the usual equations
25 based upon a single space variable. The reason for the rescaling lies in the fact that when
26 expressed with the two space variables (x,y), the actual physical gradient of a quantity @
27 that varies at the macroscopic scale, i.e. r,@Q, becomes r(,,)Q. Similarly, if the quantity
»s varies at the local scale, the actual physical gradient ¥, Q) reads er (., Q. Therefore, the
29 gradient of variables oscillating at the local scale should be rescaled. In other words, to
23 formulate the set of rescaled equations governing sound propagation at the pore scale one
2a1 should analyze at which scale the physical quantities fluctuate as well as the relative order
22 of magnitude of the terms in the governing equations. This analysis for the variables and
2 terms in Eqs. (1)-(4) is well established. The arguments and procedure can be found, for
2. example, in Refs. 27 and 30 and are now recalled.

25 In the long-wavelength regime the pore pressure fluctuates at the macroscopic scale, i.e.



26 J¥pp] = O(pp/L) and, while the fluid velocity and its rate of deviatoric deformation vary at
2w the pore scale (ie. jnru,j = O(nu,/I2)), the microscopic divergence itself is of the order
23 of the macroscopic divergence, i.e. jr u,j = O(u,/L). Note that, for example, u, is an
230 estimation of ju,j. On the other hand, the temperature varies at the pore scale, which leads
20 to the following estimation jxr?7,j = O(kT,/ lf)). Regarding the relative order of magnitude,
.n we are interested in the case when the viscous and inertial terms in the oscillatory Stokes
22 equation (1) balance the pressure gradient. Hence the estimations of the three terms in Eq.
25 (1) are of the same order of magnitude, i.e. O(nu,/I?) = O(wpou,) = O(p,/L). Similarly, the
214 estimations of the three terms in the equation of conservation of energy (3) are of the same
s order of magnitude, i.e. O(k7,/l2) = O(wpoCy7p) = O(wp,). Furthermore, the estimation of
26 the terms in the equations of conservation of mass and of state satisfy O(u,/L) = O(wp,/po)
27 and O(p,/Fy) = O(pp/po) = O(7,/70), respectively.

us  In the micro-nano porous domain, both the Darcy’s velocity U,, and the micropore
a9 pressure p,, fluctuate at the pore scale. In addition, the estimations of the terms in the
250 mass balance equation (5), as well as those in the dynamic Darcy’s law Eq. (6)), are of the
251 same order of magnitude: O(Uy,/l,) = O(wpmChn) and O(Uy,) = O(Kypm/nl,).

2 Regarding the boundary conditions, the continuity of pressure on the pore boundaries
23 [, sets O(pp) = O(pn) while the long-wavelength condition imposes that the advective
254 mass flux pulsed from the micro-nano porous domain on I'y is of one order smaller than the
25 advective mass flux generated by the incident wave in the pores, i.e.

_ JPOUm l'lj _

j,O()llp nj

U O(e). (10)

26 This estimate is justified by the following argument. Consider a cell Q and denote the
27 ingoing mass flux on one face (of surface S) as Spou,,, the outgoing mass flux on the
258 opposite face as Spou,,, and the mass flux pulsed from the micro-nano porous domain §2,,,
20 as poUpI'p. By hypothesis, a regime of long wavelength L >> [ is considered. Thus,
20 (Spotlp,  Spotp,)/Spouy,  1,/L. Since from conservation of mass Spou,, — Spouy, +
261 I'ppoUn, it follows that T'ppoUn/Spouy, — 1,/L = €.

%2 In terms of physical parameters, the ratio between the mass fluxes on the pore boundary

23 ['), can be written as:

Jpou, nj nl lipp B g@ l%

10



26+ Note that 1) the continuity of pressure on I', (i.e. Eq. (8)) has been used and ii) the
265 estimation (11) holds as long as characteristic sizes associated with the pore and micropore
266 scales are well separated, i.e. [,,/l, = O(e). Analogously, this condition can be expressed in
27 terms of the viscous permeabilities associated with the pore and micropore fluid networks
2 as K, /K, = O(€?), i.e. the permeabilities are highly contrasted. Furthermore, the mass
0 flux ratio estimation is consistent with the modeling of the micro-nano porous domain as an
270 equivalent continuum.

on The rescaled set of equations describing sound propagation at the pore scale is then given
22 by Egs. (12)-(19). Note that we adopt the usual homogenization convention that consists in
273 keeping the same notation as for the single-space-variable formulation for both the variables

o and the gradient operator. For example, ¥ and u, stand for ¥, and u,(z,y), respectively.

6277I‘2up rp, = jwpou, in €, (12)
275
. D T, .
Jjw FI; T_Z +r u,=0 in Q, (13)
276
Ekr r7, = jwCypot, Jwp, in Qp, (14)
277
er U, + jwpnCrn =0 in Q,, (15)
278
k,, )
U,= — erp, in Q.. (16)
n
279
pou, n=¢€pgU, n on [, (17)
280
Pm = Pp ON Fp> (18)
281
7,=0 on I, (19)

222 The physical variables are then looked for in the form of asymptotic expansions in powers of
263 the small parameter € = [,/ L as Q(x,y) = Pi1:0 QW (z,y) where Q = pp, Uy, Ty, Pps Pims U
26 These are then replaced in Eqgs. (12)-(19) and the terms of the same order are identified.
25 This leads to cell problems whose solutions are used in conjunction with the leading-order
286 ass balance equation spatially averaged over the pore volume to obtain the macroscopic

287 equations that describe sound propagation in multiscale sorptive porous materials introduced

@

288 in the next section. The mathematical details of the derivation are presented in Appendix

289 B
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200 D.  Macroscopic description of sound propagation in multiscale sorptive

201 materials

22 The macroscopic mass balance equation and fluid flow constitutive law determining sound
203 propagation in multiscale sorptive porous materials are a key result of this paper and are

204 Tespectively given by Egs. (20) and (21) (see Appendix B for their derivation).

r, hul(,o)i —l—jwpl(,o)C(w) =0, (20)
295
. k(w)
0 _ 0
hu}(, )l = T rmpj(g )- (21)

206 Here the dynamic viscous permeability tensor is given by k(w) = k,(w), with k,(w) being the
207 dynamic viscous permeability tensor associated with the pore fluid network. The effective
208 dynamic compressibility C(w) is given by Eq. (22) and corresponds to the sum of the
209 classical effective dynamic compressibility C,(w) (Eq. (23)) that accounts for heat transfer
30 in the pores and an additional effective dynamic compressibility C,,,(w) that results from
s the mechanisms of heat transfer in the micropores, inter-scale (micro-nano) mass diffusion,
32 and sorption in the nanopores. The contribution of C,,,(w) is weighted by the function

303 Fppn(w), which accounts for inter-scale pressure diffusion effects.
Cw) = Cp(w) + (1 9p)Conn(w)Fpmn(w). (22)

s+ The dynamic compressibility C, of the effective fluid saturating the pore network is given
305 by
_ ﬁ 1 Jw 19,(w)

s A el A 23
PO wtp Y @pO ( )

s where ©,(w) is the dynamic thermal permeability associated with the pore fluid network and
s07 the thermal characteristic frequency determining the transition from isothermal to adiabatic
s0s sound propagation in the pore fluid network is defined as wy, = k¢, /poC,Op0, Where O, =
09 ©,(w = 0) is the static thermal permeability™?.

sw The function F,,, is given by:

Jjw Bappo B(w)

Fon(w)=1 ,
p ( ) Wh Bapp BO

(24)

su where B(w) is the inter-scale pressure diffusion function, Bg,, = K,,/1nC,,, is the apparent

a2 pressure diffusivity, and the pressure diffusion characteristic frequency is estimated as wy, =

12



13 (1 ¢p)Bappo/Bo. Here By = B(w = 0) is the static value of the inter-scale pressure diffusion
sus function, B0 = Ko /NMCrnno is the static apparent pressure diffusivity, K., = K;,,(w = 0)
a15 is the static viscous permeability associated with the micropore fluid network, and C,,,o =
316 Cppn (W = 0).

sz The dynamic compressibility of the effective fluid saturating the micro-nano porous do-

us main C,,,(w) is given by (see Appendix A for its derivation):

Con(w) = Cr(w) + (1 ¢0m)CiFmn(w), (25)

519 where the dynamic compressibility of the effective fluid saturating the micropores C,, is
20 calculated using Eq. (23) with the subscript p being replaced by m. The effective compress-
321 ibility of the nano porous domain C, and the function F,,, that accounts for inter-scale

2 (micro-nano) mass diffusion are given by:

H,
C, = R (26)
jw G(w

2+ where the mass diffusion characteristic frequency is defined as wg = (1 ¢y, )Dapp/Go. Here
»s Gy is the static value of the dynamic inter-scale mass diffusion G(w) (see Eq. (A.35)),
326 Dypp = D./H, is the apparent mass diffusivity, D, is the effective diffusion coefficient, and
27 H, is the effective linearized sorption equilibrium constant®. Note that D, can be expressed
28 in terms of the diffusion coefficients associated with the volumetric diffusion of free gas
329 molecules in the bulk of the nanopores and surface diffusion of the adsorbed molecules on
30 the walls of the nanopores (see Eq. (A.5)), while H, in terms of the linearized sorption
s equilibrium constant H (see Eq. (A.6)) and can be related to the parameters of the classical
s Langmuir isotherm model** via Eq. (A.37).

;3 Further assuming macroscopic isotropy, the dynamic viscous permeability becomes k =
s KI, where I is the unitary second-rank tensor. Then, the characteristic impedance Z., wave
s number k., and speed of sound C in the material are given by* (with K = K,):

r s

Zo(w) = j&c L ke(w) = w % , Clw) = . (28)

1 Quantities that will be used to experimentally validate the theory are the surface

;7 impedance Z,, and sound absorption coefficient a of a rigidly-backed layer of material
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138 of thickness d;. These are given by:

, Zw Zo 4X
w(Ww) jZ.cot(kedp), a(w) 7. 7 I+ X P+ P (29)

19 where Zy = poco is the characteristic impedance of the saturating fluid, ¢ its speed of
10 sound, and X = Re(Z,(w)/Zp)) and Y = Im(Z,(w)/Zy)) are the normalized resistance
s and reactance, respectively.

32 In summary, the derived macroscopic equations (20) and (21) that describe sound prop-
s3 agation in multiscale sorptive rigid-frame porous materials allows us to conclude that the
s dynamic Darcy’s law and the dynamic viscous permeability are not modified by the physical
us processes occurring in the micro-nano porous domain. Only the fluid flow in the pore fluid
us network influences the dynamic permeability values. Conversely, the effective dynamic com-
347 pressibility becomes significantly modified by i) inter-scale pressure diffusion (pores to/from
s the micro-nano porous domain), ii) inter-scale mass diffusion (micropores to/from the nano
340 porous domain), and iii) sorption occurring on the walls of the nanopores. This modification
;0 comes from the appearance of a source term in the macroscopic mass balance equation, i.e.
351 the third term in Eq. (B.8), that accounts for the contribution of these physical processes.
352 Since the quantities in Egs. (28) and (29) depend on C(w), these are all modified by the

353 physical processes that influence the effective dynamic compressibility.

s« III. ANALYSIS OF THE EFFECTIVE PARAMETERS

355 The limiting values of the effective dynamic compressibility C(w << wmyin) = Ciy and
356 C(w >> Wiax) = Cpy, Where wi, = min(wyy, Wa, W, Wey) and wWpax = max(wyy,, Wy, wp), are

357 an important result of this paper. These are given by (see Appendix C for their derivation):

4

ChsPy = 30
hfL0 ~ ()

CuPo=6y+ (1 d)(bm+ (1 6mH) 22 (31)

We
30 where w,. is a global characteristic frequency that accounts for the thermal and diffusive

30 processes in the material and is defined by:

1 v 11 v 11 1 11
— =g, 41 m ——+— +(1 1 ¢m)H. —+— . (32
o= O — (1 ¢p)o o Yo (1 )1 om) R (32)



;0 Eq. (30) shows that for frequencies much higher than those characterizing the diffusion
s2 mechanisms, the influence of the physical processes occurring in the micro-nano porous
33 domain on the macroscopic effective dynamic compressibility is negligible.

3« On the right-hand side of Eq. (32), the first term is associated with the effects of heat
w5 transfer between the solid frame and the fluid in the pores. The second term accounts for
36 heat transfer between the solid frame and the fluid in the micropores and the influence of
s inter-scale pressure diffusion. The third term is associated with inter-scale pressure and
38 mass diffusion. Note that sorption modifies both the mass diffusion- and pressure diffusion-
60 related effects via the dependence of the respective characteristic frequencies on the effective
s linearized sorption equilibrium constant H.. By construction one has that wy, < wiy,, wg <
371 Wy, and wp < wyy,. Depending on the morphologies of the pore fluid network and micro-
32 nano porous domain as well as their associated thermal and apparent mass diffusivities, the
;i3 mass diffusion characteristic frequency could be either smaller; in the order of, or larger
sa than the thermal characteristic frequency associated with the pore fluid network, i.e. either
315 Wy < Wrp, Wy = O(wyp), OF wy > wyy. Similarly, the same type of sorting relationship can be
s observed for wj, and wy,. On the other hand, one may observe wy; = O(wy,) or wg > w, for fast
sr7 diffusing system, while for strongly sorptive gas-solid system presenting slow mass diffusion
sis the inequality wy < wy, is likely to be observed.

sro Defining the ratio between the effective adsorbate concentration in the nanopores and the
30 effective gas concentration in the pores and micropores as My = (1 ¢p)(1  ¢m)He/bpm,

se1 1t follows from Eq. (31) that the static compressibility is given by:

Co= Clo=0) = (@ + (1 6,)(6m+ (1 Gn)H) = propm(1+ Mu). (33

22 This equation shows that, as a consequence of sorption, the low-frequency effective dynamic
;3 compressibility can attain a value substantially larger than that of conventional porous
ssa aterials.

s It is worth highlighting that the direct relation between the effective linearized sorption
86 equilibrium parameter H, and the real part of the low-frequency effective dynamic compress-
37 ibility, given by Eq. (33), allows deducing H, from measurements of Re(C(w ¥ 0)). On the
;s other hand, the effective diffusion coefficient D, can be measured from measurements of the
s imaginary part of the effective dynamic compressibility and the use of Eq. (31), provided

300 that the other macroscopic parameters involved are known.
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s In general, the effective dynamic compressibility reduces to that of conventional single
302 porosity non-sorptive materials when ¢,, = ¢,, = 0, i.e. C(w) = C,(w). Hence its limiting
303 values are PyC(w >> wy,) = ¢,/v and PyC(w << wyy) = ¢  jw/w,, with 1/w. being equal
30 to the first term on the right-hand side of Eq. (32).

w5 In absence of nanopores, i.e. ¢, = 0 (or H, = 0), the effective dynamic compress-
396 ibility of double porosity non-sorptive materials with highly contrasted permeabilities33:3¢
w7 is retrieved, i.e. Clw) = C, + (1 ¢,)Cp(w)Fpn(w). Here F,, is calculated using Eq.
s (24) and keeping in mind that the apparent pressure diffusivity becomes By, = Baypo =
300 Ko Po/dmn. Consequently, the pressure diffusion characteristic frequency is given by wy, =
wo (1 ¢p)KinoPo/pmnBo and the limiting values of the effective dynamic compressibility are
w PC(w << wyp) = ¢pm Jw/w, and PoC(w >> w,) = ¢,,/7. In this case, 1/w. is given by
w2 Eq. (32) for H, = 0.

w3 The case of a material without micropores, i.e. ¢, = 0, given the extremely large
a4 separation between the characteristic sizes associated with the nanopore and pore scales
w05 considered in this work, is of less interest since the mass flux pulsed from the nano porous
w06 domain is extremely small in comparison with the mass flux in the pores. Hence the mass
w7 flux ratio is estimated by U = O(e?) and the material effectively behaves as a single porosity
w08 non-sorptive material in the audible frequency range.

w9 For amaterial without mesoscopic pores, i.e. ¢, = 0, the effective dynamic compressibility
a0 reduces to that of double porosity sorptive materials introduced in Ref. 25 (see also Appendix
a1 A), while the dynamic viscous permeability is given by K = K,,.

sz The case of pressure and mass diffusion occurring without sorption is observed when i) the
a3 number of adsorbed layers is equal to zero (i.e. N = 0), ii) the concentrations of the adsorbed
s and gaseous phases are identical (i.e. H = 1), or iii) the characteristic size of the nanopores
a5 is much larger than the size of the molecules, i.e. [, >> d. In all these situations, the
a6 effective dynamic compressibility reduces to that of a triple-porosity non-sorptive material
a7 and is calculated using Eq. (22). The parameters involved take the values: D, = ¢,D,,
as He = ¢, and By, = Ko Po/dmnn. Hence, one has that PyC(w << Wmin) = Ppmn  Jw/we
a9 and PyC(w >> Wimax)) = ¢/, where 1/w, is given by Eq. (32) with H, = ¢,.

20 As discussed previously, the fluid flow at the leading order remains unaffected by the
a1 physical processes occurring in the micro-nano porous domain under the conditions estab-

a2 lished through homogenization (i.e. U = O(e) and J = O(e), see Egs. (10) and (A.11)).
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23 Hence the properties of the dynamic viscous permeability are the same as those of this
222 parameter for single porosity non-sorptive materials. Considering leading-order terms only,
s the dynamic viscous permeability takes the following limiting values®: K(w << w,,) = Ko
o and K(w >> wyy) = j¢,02/aa, where w,, = ¢,n/poKoaa is the viscous characteristic
w7 frequency, 6, = DW is the viscous boundary layer thickness, and a4 is the tortuosity.

ws  Using the asymptotic values of C(w) and K(w), the following limiting values for the speed

49 of sound and wave number are obtained:

S
ijO PQ C0¢ C0¢ m
Clw ¥ 0)= =g = p—" 34
| ) N Gpm(1+ Mu) H"ﬁ;—m(HMH) C1+ My (39
P
_ Cogprmn
| dom )
¢>ppm<1 —+ MH)
C
C(w ' 1) = C:|.¢>p = C:Ld)pm = C:|.(]5pmn = pO(é):
1
430
S s,
n (bpm (bpm P—
k. T 0= “—(1+ Mpyg) =k, “— 1+ Myg) =k, 1+ Mg (35
(w 1 0) Ko By (1+ Mp) = keog, Y (1+ Mpg) = kogom 1+ Mu (35)
SsS
B Gpm
- kco¢pmn (1 + MH>7
(,bpmn
ho(w ¥ 1) = -2 ~ ~

" Cis Cagem  Cagpmn

s The subscripts ¢p, ¢pm, and @pm, denote the limiting values for single, double, and triple
a3 porosity non-sorptive materials respectively. These expressions show that, at low fre-
a3 quencies, the sound waves are both slowed down and more attenuated by a factor of
434 p(¢pm/¢p)(1 + Mpy), pl + My, and p(gbpm/qbpmn)(l + Mpy) in comparison with single,

s double, and triple porosity non-sorptive materials, respectively. At high frequencies, the

36 influence of sorption and the inter-scale diffusion processes vanishes.

w7 Although not an effective parameter, it is of interest to investigate the low-frequency
s asymptotic behavior of the surface impedance Z,,(w ¥ 0) = Z, of a rigidly-backed layer of
10 multiscale sorptive material of thickness d;. Provided that jk.(w)d;j << 1 and w << Wpin,
uo the real and imaginary parts of the low-frequency surface impedance can be approximated by
a1 (with o0 = /Ko being the static flow resistivity and ® = ¢, + (1 ¢,)(dm+ (1 ¢m)He) =
a2 opm (1 4+ Mp) the apparent porosity of the material):

I

. Tpo F
Wdlq) ’

Re(ng) dl — 4

m(Z,
0(Zuo) 3 B,

(36)
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a3 These equations are an important result of this paper and can serve as a basis for developing
aa nOvel measurement methods of sorption and diffusion parameters of multiscale sorptive ma-
as terials using sound waves. They show that the effective linearized sorption equilibrium con-
us stant H, can be extracted from measurements of the imaginary part of the surface impedance
w7 at low frequencies, while its real part can be related to the effective diffusion coefficient D,,
us provided that the other macroscopic parameters involved are known. A theoretical study
uo assessing the feasibility of such a method has been presented in Ref. 17 for the particular
w0 case of an array of cylindrical pores embedded in a nanoporous sorptive matrix. In the
s present work, Eqs. (36) are developed for triple porosity sorptive materials with complex
a2 material morphology and depend on macroscopic independently measurable parameters.

i3 The following relationships (i.e. Eq. (37)) show that the magnitude of the imaginary part
ass of the surface impedance of a rigidly-backed layer of multiscale sorptive material is smaller
»ss than that of single, double, and triple porosity non-sorptive materials.

¢p Im<Zwo¢p) . Im(Zwo¢pm) . (bpmn Im(ZwO¢pmn)

Im(Z,9) = = =
(Zuo) Gom 1+ My 1+ My Gom 1+ My

(37)

w6 The relationships between the real part of the surface impedance for sorptive and non-

57 Sorptive materials can be written as:

o) 1,

2
1 ¢ we

ST (38)

1 Upowcdlzq’z
3P

Re(Zwo) = Re(Zwog) 81

s Here the subscript £ takes values ¢p,, ¢pm, and ¢pp,, for single, double, and triple porosity
a0 non-sorptive materials. In turn, ®y = ®(¢dy, = ¢p, = 0) = ¢, Py, = Gpm, and Py =
w0 Ppmn- The characteristic frequency takes the following values wey, = We(pm = ¢n = 0),
w01 Wegpm = We(Pn = 0), and Weppmn = We(He = ¢,). Depending on the parameters of the
w2 material, this ratio can be smaller or larger than one. This implies that the real part of
a3 the surface impedance of a sorptive material can be either smaller or larger than that of
64 NON-sorptive materials.

w5 Finally, using Eq. (29), the sound absorption coefficient o can be written in terms of
ws the low-frequency normalized resistance X, = (d;/Zy)(00/3 + Po/(®*d?w,)) and reactance

467 Yb = Po/Zowdl(I) as:
1

(14X5)2 | (Yy)2
4X, 4X,

aw ¥ 0) =

(39)
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s6s The denominator of this expression is minimized when its first term tends to one (i.e. X, ¥
w0 1) and its second term is as small as possible. As ® increases, the magnitude of the low-
a0 frequency reactance decreases. Taking into account that & can take values larger than one
a1 when H, is large, the decrease in magnitude of the low-frequency reactance is much more
a2 pronounced for sorptive materials in comparison with non-sorptive ones. It then follows that
a3 sorptive materials tend to provide larger sound absorption coefficient at low frequencies.
a2 This appears as a direct consequence of the decrease of the magnitude of the low-frequency
a5 reactance, which is determined by the larger effective low-frequency dynamic compressibility

a6 caused by sorption.

a7 IV. ANALYTICAL MODEL FOR MULTISCALE SORPTIVE GRANULAR
s MATERIALS

o An analytical model for multiscale sorptive granular materials is introduced in this section
w0 to exemplify the theory developed in this work. A model for a packing of porous grains
ss1 whose inner structure comprises two different scales of heterogeneities is considered. The
w2 hierarchical structure of the material is the same as that in Ref. 24. However, the calculation
a3 of the effective parameters associated with the nano porous domain differ. Specifically, the
s compressibility of the nano porous domain is calculated using a single parameter H,, instead
a5 of three parameters; and, since the inter-scale mass diffusion is not assumed quasi-static, an

a5 analytical expression for the frequency-dependent function representing this phenomena is

o

457 introduced.

[}

s The smaller inner-grain scale corresponds to the nano porous domain and is modeled as
a0 an effective medium with parameters (see Eqs. (A.6) and (A.5)): He = ¢n(p+(1 ¢)H) and
o Do = ¢ (0D, + (1 )DsH), where ¢, is the nano porosity. Taking into account that the

4

©

s01 Tatio between the nanopore surface area and volume is inversely proportional to the nanopore

©

a2 characteristic size, the transport void fraction is approximated as ¢ =1  d/r,, where r,
a03 is the radius of the cylindrical nanopores. It is additionally considered that the diffusion
s mechanism in the bulk of the nanopores is Knudsen diffusion!, i.e. D, = Dy = 2r,v7/3
w05 with v being the mean thermal speed; while the surface diffusion coefficient is calculated
ws as’: Dy = (1/4)Cvrexp( E,/Ry7). Here R, is the gas constant, ¢ is the distance between

a7 adjacent sites (which is approximated by the molecule size, i.e. { d), and E, is the energy
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w5 of activation needed for a jump, which is in the order of a third of the heat of adsorption®.
a0 The linearized sorption equilibrium constant H can be modeled using a Langmuir isotherm
s0 model? (see Eq. (A.37)). Alternatively, one can directly use values of H, and D, as inputs to
sor the model. It is worth noting that the former can be obtained from isotherm measurements®,
s2 while the latter using chromatographic methods, among others'%4,

s The larger inner-grain scale is the micropore domain 2,,. This is modeled as an array
soa Of cylindrical micropores with radius r,, and micro porosity ¢,,. The dynamic viscous and
sos thermal permeabilities associated with the micropore fluid network accounting for rarefaction
sos effects, i.e. K, (w) and O,,(w), are calculated from the solution of Eqs. (A.18)-(A.19)
sor and (A.21) with boundary conditions (A.42) and (A.43), respectively. These permeabilities
sos depend on the Knudsen number Kn = ¢/r,, with ¢ being the molecular mean free path, and
s00 their expressions, which involve Bessel functions Jy; of the first kind of order 0 and 1, have
s10 been obtained in Ref. 37 and are shown in Table I.

su  The pore-scale geometry is modeled as an array of spherical grains with grain radius r, and
si2 inter-granular void porosity ¢,. The dynamic thermal and viscous permeabilities associated
s1i3 with the pore fluid network, ie. ©O,(w) and K,(w), are calculated from the solution of
s BEgs. (A.18)-(A.20) and (A.21)-(A.22) (with the subscript m being replaced by p). A self-
s15 consistent approach, as detailed in Refs. 38 and 39, has been used. The expressions for
s16 these permeabilities are shown in Tables I and II, respectively.

sz The inter-scale (inner-grain micropores to/from nano porous domain) mass diffusion func-
s18 tion G(w) is obtained from the solution of Eqs. (A.23)-(A.24). A self-consistent approach,
s19 as detailed in Refs. 25 and 40, has been used. The final expression involves modified Bessel
s20 functions I; and K, of the first and second kind of order ¢ and is shown in Table I.

sn The inter-scale (inter-granular voids to/from grains) pressure diffusion function B(w) is
522 calculated from the solution of Egs. (B.4)-(B.5) using a self-consistent approach? and its

s23 expression is shown in table I.
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TABLE 1. Analytical model for the dynamic compressibility of the effective fluid saturating a

multiscale sorptive granular material.

Effective dynamic compressibility

C(1)=Cy(H)+(1 2)Crmn (1) Fpmn(1);

__jwBw) .
Fpmn( ) =1 (1 ¢p)Bapp(w) "

Effective dynamic compressibility and thermal permeability of the inter-granular voids

Cp(1) =% 1 jI oG, 1%W .

v Ppk
- 3y 2 B 3 14zt tanh (2¢(8 1))
ep( !) = J(l ) i1 1 p322 1 Zt zt—l—ttanh (ztt(ﬁ 1)) ’
. q
where = I?l o =ji? 55’{ and ¢ = pogpw:

Effective dynamic compressibility of the micro-nano porous domain (i.e. the grains)

Comn(M)=Cp(1)+ (1  ,)CrFnn(l);

JwG(w) .
an( ) =1 (1 ¢m)Dapp) "

Effective dynamic compressibility and thermal permeability of the inner-grain micropores

m 1 Om .
Cm(!):% 1 jt pryl qu(:) :
_ H 2 2 J1(Xt) i
@m(!) - J m t 1 XitJo(Xt) 1kt>th1(Xt) ’
with Xt_JS/QTm ktZQ%, Kn:%, and PI‘:%:

Effective compressibility of the inner-grain nano porous domain

_ e,
Cn = Lo

Inter-scale (inner-grain micropores to/from nano porous domain) mass diffusion function

S= 30 Wi R
with R )= & Ki(a) £ (1) laptnll( ) i= 01
P, Dapp.
a= 155 d4= %1 and Dapp—%'

Inter-scale (inter-granular voids to/from grains) pressure diffusion function
1 3 b2(1 bCOt( b)) ;

B()= j(1 p)é
Bapp Km(w) .

where _J3/27"p b= by and Bapp(!) = 7CamW)"

Viscous permeability of the inner-grain micropores

_ H 2 J1(Xv) .

Km( ! ) - J m 12) 1 Xi ( ) lkVXvJ]_(Xv) ’
with X, = j3/2im; k,=Kn=:%; and ,= -L:
\ m pow




TABLE II. Analytical model for the dynamic viscous permeability of a multiscale sorptive granular

material.

Dynamic viscous permeability

1 3
- 3 S +1
K =K,(D= jo 321 F-

g — 3 Apz+Bptanh (2(8 1)).
~ 22 apz+tbptanh (2(B 1))’

A,=(B+( 2?2 1+2 3 14+%Z ;
22 4

4=368+(2% 3 § 1+% +aweeE oy

B,=(B+(2)? 1+% 32> 1+% ;

by=3+ ( 1)z 2 1+% ;

TABLE III. Static values of the effective dynamic permeabilities and inter-scale diffusion functions

of a multiscale sorptive granular material.
"5 5 984583 B°
@pO = % 53

o4 8 Kn

Omo = m'g (v+1)Pr
2
Go=gi( 2In( ) +4 »n 5 3)
2
Bo = (1 p)%

Kmo = m'2(1 + 4Kn)

_ TR 2435
Koo = 352 315 1

Using the static values of the thermal permeabilities and inter-scale diffusion functions

524
s»s shown in table III, one can explicitly write the characteristic frequencies determining the

s26 behavior of the effective dynamic compressibility as:
K k 15 31 B3
Wip = ¢p = - 5 ( 3> o (40)
pon@pg pon Tp (5 95 + 55 ﬁ )
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Omk k8 8vKn !

m = == - + ) 41
“ p0CpOmo  poCyp17, (v +1)Pr (41
527
1 m DCL De 8 m 1 m
Wd:< Pm) pp _ He © O Om) , (42)
Go Her? ( 2Ingy, +4¢m  ¢2, 3)
528
1 B, Py 1512 144K
Wy = (1 ¢p)Bappo _ _0_7’_7;1@” +4kn . (43)
BU n 8 7ap (bm + (1 ¢m)He

s0  Eq. (41) shows that rarefaction effects reduce the thermal characteristic frequency wyy,,
s: while Eq. (42) indicates that the effective mass diffusion is slowed down by sorption. This
sa1 effect on the pressure diffusion characteristics of the material can, however, be compensated
s2 by rarefaction effects, as shown by Eq. (43).

53 The introduced model depends effectively on six parameters, namely the grain radius
s34 Tp, inter-granular porosity ¢,, micropore radius r,,, micro porosity ¢,,, and the effective
s35 parameters of the nano porous domain, i.e. D, and H,. This model can be simplified since,
s3 for the materials of interest, the micropore size is in the order of the molecular mean free path
s37 and sound propagation in the micropores can therefore be considered as viscosity-dominated
s33 and isothermal. Hence, the dynamic viscous and thermal permeabilities associated with the
s micropore fluid network can be approximated, in the audible frequency range, by K,,(w) =
sa0 Ko and ©,,(w) = O,9. This leads to C,, = ¢/ Fo, Coin = O/ Po+ (1 1) CrFpnn, and
sa1 Bopp = Kino/NCinpn. This shows that, in the audible frequency range, sound propagation in
s.2 multiscale sorptive materials is mainly affected by viscosity and heat transfer effects at the
sa3 pore scale and the inter-scale mass and pressure diffusion processes. The former diffusion

sas process is influenced by sorption while the latter by both sorption and rarefaction.

ss V. ILLUSTRATING EXAMPLES AND EXPERIMENTAL VALIDATION
s A, Illustrating examples

sa7  The acoustical properties of multiscale sorptive porous materials are illustrated in this
sass section. First, we present results for the effective dynamic compressibility due to its sig-
ss9 nificant influence on the acoustical properties of this type of materials. We consider the
ss0 following parameters of a multiscale granular sorptive material: r, = 1 mm, ¢, = 0.4,
s51 7, = 1 ppm, ¢, = 0.5, 7, = 1 nm, ¢, = 0.2, H = 75, and E, = 10 kJ/mole. The value of

s2 the energy of activation needed for a jump FE, has been set equal to a third of the heat of
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553 adsorption, which is in the order of 20 to 40 kJ/mole for activated carbons!'. In addition,
s it should be reminded that the developed theory applies to materials saturated with a pure
sss fluid. However, for simplicity, the saturating fluid parameters are set equal to those of air
ss6 (with molecular size d  0.38 nm), which are close to those of nitrogen at the considered
ss7 normal pressure (P = 101325 Pa) and temperature (75 = 293.15 K) conditions.

sss  Figure 2 shows the real part of the effective dynamic compressibility, calculated using the
sso model shown in table I, of a triple-porosity sorptive material normalized to the isothermal
s value of this quantity for a triple-porosity non-sorptive material, i.e. Re(PoC(w)/@pmn)-
ss1 This is compared with that of single, double, and triple porosity non-sorptive materials.
se2 Respectively, these correspond to a packing of solid grains (i.e. ¢, = ¢, = 0), and of
s63 porous grains without nanopores (i.e. ¢, = 0) and with H, = ¢,, and effective diffusion
sea coefficient D, = ¢, D. Sorption induces a significant increase of the real part of the dynamic
ses compressibility at low frequencies. For the four cases, the low-frequency limiting values are
sec well described by Eq. (33), while at high frequencies the real part of the effective dynamic

sev compressibilities tend to the same limiting value, as predicted by Eq. (30).

w
w o

g
3

15¢

Normalized compressibility (real part)
N

Frequency [Hz]

FIG. 2. Real part of the normalized effective dynamic compressibility Re(PoC(1)= ,mn) as a
function of frequency. Continuous black line: multiscale sorptive granular material. Dashed black
line : triple porosity non-sorptive granular material (i.e. H. = , and D, = ;D). Continuous
gray line: double porosity non-sorptive granular material (i.e. , = 0). Dashed gray line: single
porosity non-sorptive granular material (i.e. , = ,, = 0). The markers show the asymptotic

. Values predicted by Egs. (33) and (30).

569

s The negative of the imaginary part of the normalized effective dynamic compressibility,

s which is associated with the acoustic losses in the material, and the characteristic frequencies
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determining its behavior are shown in Figure 3. These have been calculated using the
model shown in table I and Eqgs. (32) and (40)-(43), respectively. Multiscale sorptive
materials provide much larger sound attenuation than non-sorptive ones in the low frequency
range. This is a direct consequence of the combined effect of heat transfer in the pores and
inter-scale mass and pressure diffusion with the latter two being influenced by sorption.
Such attenuation is maximized around the characteristic frequencies associated with these

phenomena, i.e. around wy,, wq, and w.

S

10°

Normalized compressibility (negative of imag. part)

10° 10 10° 10° 10* 10° 10° 10" 10
Frequency [HZ]

FIG. 3. Negative of the imaginary part of the normalized effective dynamic compressibility

Im(PoC(¥)= pmn) as a function of frequency. Continuous black line: multiscale sorptive gran-

ular material. Dashed black line : triple porosity non-sorptive granular material (i.e. H, =
and D, = ,Dyg). Continuous gray line: double porosity non-sorptive granular material (i.e.
n = 0). Dashed dark gray line: single porosity non-sorptive granular material (i.e. , = ., =0,

non-porous grains). Dashed light gray line: single porosity non-sorptive monolithic material with
micropores only (i.e. , = , = 0). Thin dashed black line : low-frequency asymptotic value

Im(PoCif(¥)= pmn) (see Eq. (31)). The vertical lines with markers represent characteristic fre-
quencies. Circle : f. = 1,22 . Square: f;,. Left-pointing triangle : f;. Right-pointing triangle :
T, (no sorption). Upward-pointing triangle : f;. Downward-pointing triangle : f; (no sorption).

Diamond : fy,,. The material parameters are as in Figure 2.

In comparison with a triple porosity non-sorptive material, the characteristic frequencies
wg and w;, decrease as a direct consequence of the local slowing down of mass diffusion by
sorption (see Eq. (42)), and the increase in effective dynamic compressibility also caused
by this phenomena (see Eqs. (C.3) and (43)). This can be seen by comparing the vertical

lines with left-pointing and upward-pointing triangles with those with right-pointing and
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downward-pointing triangles. Moreover, in the absence of sorption, the expected peak as-
sociated with inter-scale mass diffusion becomes negligible. This is because the influence
of the inner-grain physics on the macroscopic behavior becomes smaller when w >> wy.
This indicates that in order to be able to observe (and/or take advantage of) the effects
associated with the inner-grain physics, one should ideally have that O(w,) = O(wy), i.e.
O((1  ¢p)BuppoBy ') = O((1  ¢)DuppGy'). This condition, which guarantees the rich
interplay between the different physical phenomena and geometric features of multiscale
sorptive materials, for the geometry considered here is given by Eq. (44) with A being a
constant that is ideally A 1 but not extremely larger than unity.

64 7 Dapp 7p S+ (1 ) He 1 ém
5P r% 2 1+ 4Kn 2In(¢pp) + 40 @2, 3

= A (44)

For the material parameters considered in the example shown in Figure 3, the double
porosity non-sorptive material behaves similarly as the triple-porosity non-sorptive one. The
two single porosity non-sorptive materials (i.e. a packing of non-porous grain ¢,, = ¢, =0
and a monolithic material with micropores only ¢, = ¢, = 0) also displayed in Figure
3, clearly show the positions of the peaks associated with heat transfer in the pores and
micropores, as well as their influence on the behavior of the multiscale material. It should
be noted that, in this example, rarefaction effects are negligible since Kn = 0.06. Hence these
effects do not substantially compensate the decrease in wy, caused by sorption. For materials
with smaller micropores, rarefaction effects can become significant, as will be shown later
in the paper. On the other hand, the asymptotic value of the compressibility, given by
Eq. (31) and shown with thin dashed lines in Figure 3, correctly predicts the behavior for
frequencies w << wpin, while the global characteristic frequency w. appears as a parameter
that allows identifying, in a simple manner, the frequency range where the sound attenuation
is maximized. Furthermore, it should be emphasized that the results presented in Figures
2 and 3 are valid in the absence of scattering. This is estimated to occur at a frequency in
the order of fo = co/2ml,  co/4mr).

The effects previously discussed, i.e. inter-scale mass and pressure diffusion and sorption,
lead to a decrease in sound speed and an increase of the overall sound attenuation, as
predicted by Egs. (34)-(35). This is shown in Figures 4 and 5 where the normalized speed
of sound and attenuation coefficient are respectively presented. Note that i) these have been

calculated using the model shown in tables I and IT and Eq. (28), and ii) the normalization of
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o1 the former has been made to co/ PaT with®® aq = (3 ¢,)/2; while that of the attenuation
a1s coefficient to w/cy. In addition, the ratio of these quantities for sorptive and non-sorptive

16 materials is well predicted by Eqs. (34) and (35), as can be seen in the inset plots.
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FIG. 4. Real part of the normalized sound speed pTRe(C(!))=Co as a function of frequency
for multiscale sorptive (a) and non-sorptive triple (b), double (c¢), and single (d) porosity granular
materials. The inset plot shows the real part of the sound speed ratios: (e) Re(C(¥))=Re(Cg,, (1)),
(f) Re(C(¥))=Re(Cg,, (1)), and (g): Re(C(?))=Re(Cy,(¥)). The markers correspond to the low-

.1, requency asymptotic values of these ratios (see Eq. (34)).

618

e0  As discussed in Section III, the behavior in frequency of C(w) is determined by the
s21 characteristic frequencies wy,, wq, wy, and wy,,, which depend on physical and geometrical
s22 parameters of the material. In particular, it has been shown in Figure 3 that the global
s23 characteristic frequency w,. provides a good indication of the frequency range where the
s acoustic losses are maximized. The global characteristic frequency, calculated using Eq.
625 (32), is shown in Figure 6 as a function of the effective diffusion coefficient D, for different
626 values of the effective linearized sorption equilibrium constant (H, = 2,4, 8) and micropore
o7 radii (rp,, = 0.2 pm and 7, = 2 pm). The inset plot shows the characteristic frequencies
o8 fq, fp, and f. as a function of D, for r,, = 0.2 yum and H., = 4. For a given micropore
s20 Tadius value, the global characteristic frequency f. increases as D, does until it reaches a
s30 plateau for frequencies f; >> f,. The transition is characterized by f; = f;, as shown with
s31 & vertical dotted line in the inset plot. The plateau region is reached at larger values of D,
s32 when the micropore radius becomes larger. On the other hand, f. decreases as H, increases
633 and is dominated by either f, or f;, whichever is much lower.

s The influence of the grain radius r, on f, is shown in Figure 7. As previously observed,

27



—a@

Att. coeff. ratio

Normalized attenuation coefficient
Hw s G N

.

/

e
15)
=
S}
=
5)
=
o,
=
o,

Frequency [Hz]

FIG. 5. Normalized attenuation coefficient Colm(k.(1))=1 as a function of frequency for multi-
scale sorptive (a) and non-sorptive triple (b), double (c), and single (d) porosity granular mate-
rials. The inset plot shows the attenuation coefficient ratios : (e) Im(k.(!))=Im(Kegpmn (1)), (f)
Im(Ke(¥))=Im(Kegpm (1)), and (g): Im(Kc(¥))=Im(k.g,(1)). The markers correspond to the low-

frequency asymptotic values of these ratios (see Eq. (35)).

e35 the global characteristic frequency, calculated using Eq. (32), is dominated by f; when
s36 fqg << fp, while by f, when f; >> f,. In addition, f. decreases when H, becomes larger.
s37 For small values of D,, the influence of the grain radius on the global characteristic frequency
e3 is negligible. This is because f. is determined by f;, which does not depend on 7,. As D,
630 increases, f. becomes larger when the grain radius is decreased. This indicates that in order
s10 t0 Observe and/or take advantage of the sound attenuating properties of multiscale sorptive
sa1 materials in the audible frequency one may prefer materials with small instead of large

642 rains.

s3  The influence of rarefaction effects in the modeling is now analyzed. Figure 8 shows the
s4 global characteristic frequency f., calculated using Eq. (32), as a function of the Knudsen
s number Kn for several values of micro porosity ¢,,. Note that the results are plotted up
sas to Kn = 1. Although the modified continuum description is not theoretically valid for
sr Kn > 0.1, satisfactory agreement between measured data and theoretical predictions of
sss rarefied gas flow through straight cylindrical tubes has been demonstrated in Ref. 37. As
sa0 previously, the global characteristic frequency is determined by either f; or f,, whichever
ss0 is much lower; as shown in the inset plot. When f. is determined by f;, the prediction of
ss1 the global characteristic frequency is underestimated if one does not account for rarefaction

ss2 effects in the modeling. As an example, f. could be predicted to be 5 times smaller when
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FIG. 6. Global characteristic frequency f. as a function of the effective diffusion coefficient D, for
different values of effective linearized sorption equilibrium constant H. and micropore radius r,,.
The other parameters are as in Figure 2. Main plot : (a) H. =2 and r,, = 0:2 m. (b) H, =4
and rp, =02 m. (¢c) He =8 and r, =02 m. (d) He=2and r, =2 m. (e) H. = 4 and
=2 m (f) H. =8 and r,, =2 m. The inset plot shows the characteristic frequencies (A)
f., (B) f4, and (C) f, as a function of D, for H. = 4 and r,,, = 0:2 m. The vertical dotted line
(D) shows D, for f; = ;.

653 I, = £. Evidently, for small values of Knudsen number the influence of rarefaction effects is
es4 negligible. On the other hand, the global characteristic frequency presents higher values as

ss5 the micro porosity ¢,, increases and is maximized when the micropore radius approximately

ess takes a value for which O(fq) = O(f3).

7 Figure 9 shows the normal incidence sound absorption coefficient of a rigidly-backed 3-cm
sss thick layer of multiscale sorptive granular material in comparison with that of non-sorptive
ss0 granular ones, i.e. packing of solid grains (single porosity, ¢, = ¢,, = 0), of porous grains
se0 without nanopores (double porosity, ¢, = 0), and of porous grains with two inner-grain
se1 scales (triple porosity material, H, = ¢,,). These have been calculated using Eqs. (29) and
62 (28) and the model shown in tables I and II. The plot clearly shows that multiscale sorptive
s63 granular materials provide larger sound absorption coefficient than non-sorptive materials.
s« This increase is enhanced further for larger values of H.. The inset plot shows that « is well
s6s approximated at low frequencies by its asymptotic value Eq. (39). Hence, this provides a
s simple expression to evaluate the low-frequency sound absorption coefficient of multiscale

68 SOrptive materials.
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FIG. 7. Global characteristic frequency f. as a function of the effective diffusion coefficient D, for
different values of linearized effective sorption equilibrium constant H. and grain radius r,. The
other parameters are as in Figure 2. Main plot : (a) H, = 2 and r, = 0:1 mm. (b) H, = 4 and
r, =0:1mm. (c) Ho. =8 and r, = 0:1 mm. (d) He =2 and r, =2 mm. (e) Hc. =4 and r, = 2
mm. (f) Hc = 8 and r, = 2 mm. The inset plot shows the characteristic frequencies (A) ., (B)
f4, and (C) T, as a function of D, for H, = 4 and r, = 2 mm. The vertical dotted line (D) shows
D, for f; = 1.
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FIG. 8. Global characteristic frequency f. as a function of the Knudsen number Kn for micro

porosity values ,, = 0:1 (black lines), ,, = 0:3 (dark gray lines), and ,, = 0:6 (light gray

lines). Continuous lines : model accounting for rarefaction effects. Dashed lines : model without
accounting for rarefaction effects. The other parameters are r, = 0:75 mm, , = 0:3, D, = 10 10
m?=s, and H, = 2. The inset plot shows f. (continuous dark gray line), f; (dashed black line), and

T4 (dashed light gray line) as a function of Kn for ,, = 0:3.
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FIG. 9. Sound absorption coefficient  of a 3-cm rigidly-backed layer of material. Multiscale
sorptive granular materials: black continuous (H. = 8), dashed (H. = 4), and dashed-dotted
(He = 2) lines. Packing of non-sorptive porous grains with two inner-grain scales of heterogeneities
(triple porosity, continuous dark gray line), without nano pores (double porosity, continuous light
gray line), and of solid grains (single porosity, dashed-dotted gray line). Inset plot: low-frequency

for a multiscale sorptive granular material (H, = 4, continuous black line), and double (continuous
dark gray line) and single (continuous light gray line) porosity non-sorptive granular materials; and
its asymptotic values (Eq. (39), dashed lines). The other parameters are r, = 0:75 mm, , = 0:3,

r, =05 m, ,,=0>5 D.=10  m?=ss, and , = 0:1.

B. Experimental validation

1. Material characterization

This section describes the characterization of a granular activated carbon (GAC) sample.
The characterization procedure for the parameters describing the inter-granular physical
process and those in the micropores is similar to that in Ref. 24. The characterization
of the parameters describing sorption and mass diffusion differs. Measurements of surface

impedance are used to deduce these parameters, as detailed below.

The highly activated GAC sample is made out of coal, its N2 surface area is 1274 m?/g,
and its model parameters are shown in Table IV. It is detailed throughout this section how
these six parameters have been measured or deduced.

An equivalent grain radius 7, of the GAC sample has been measured using optical gran-

ulometry following the procedure detailed in Refs. 22 and 23. The equivalent grain radius
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TABLE IV. Parameters of the granular activated carbon sample.

p Tpmm] . rp[m He De 10°[m?=g]

0:2997 0:7363 0:7064 0:3695 T7:1189 2:9156

e distribution follows a log-normal distribution f(tju,0) = (1 /t@p%) exp (Int p)%/20?
ess With parameters = 7.2513 and 6 = 0.2741. The equivalent grain radius r, is set to the
ses mean value of the equivalent grain radius distribution, i.e. r, = 0.7363 (0.2056) mm, where

ses the value in round brackets corresponds to the standard deviation.

s The GAC sample exhibits well separated scales. This implies that the overall permeability
ss7 can be approximated by that of the pore-scale fluid network. Measurements of flow resistivity
sss 0p0 = 1)/Kpo, taken by following the procedure described in Ref. 41, are used to estimate
ss0 the inter-granular void porosity ¢,. This is made by using the measured value of r, and
so0 inverting the expression for K,y shown in table III, as detailed in Ref. 23. The average flow

eo1 Tesistivity value is 0,9 = 24.5923 (1.5104) kPa.s/m?, which yields ¢, = 0.2997 (0.005).

2 The overall porosity ¢pmn = 1  ps/pc is calculated from the measurement of the bulk
s03 density pp, and the density of the material solid frame, which is assumed to be that of carbon
e« black pc = 2.2 g/cm®. The measured bulk density of the GAC sample is p, = 0.335 g/cm?.
sos Hence, the overall porosity is ¢pm, = 0.8477.

s The micro porosity was calculated as ¢, = (Ppmn  &p (1 0p)on)/(1 ¢p)(1  ¢n).
so7 The nano porosity has been supplied by the manufacturer and is ¢,, = 0.2593. Hence, the

608 Micro porosity is ¢,, = 0.7064.

so  The effective linearized sorption equilibrium constant H, is deduced from measurements
70 of the imaginary part of the surface impedance Z,,(w) of rigidly-backed layers of the GAC
700 sample. These measurements were taken by following the procedure described in the ISO
72 standard*?. A vertically-installed Briiel & Kjeer 4206 impedance tube was used. GAC
703 samples with layer thickness values ranging from 2 cm to 8 cm in steps of 1 cm were
700 meastred?>24. The previously derived asymptotic value of the imaginary part of the surface
705 impedance, i.e. Eq. (36), is used to determine the apparent porosity ®. We remind that this

706 asymptotic is valid for jk.djj << 1 and w << wypin  we. A function 2y (w) = Lo 5 = dw

Im(Zw)
77 that is linear in frequency can be defined form Eq. (36). The apparent porosity @ is the

708 proportionality constant and can be obtained by linear fitting of z;(w). An example of this
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700 18 shown in the right-hand-side inset plot of Figure 10 for a 4-cm thick GAC sample. Then,
70 the effective linearized sorption equilibrium constant is calculated as H. = (& ¢,)/(1
m ¢p)  Om)/(1 ¢p). Its value is H, = 7.1189  0.1508.

72 Measurements of the real part of the surface impedance and the use of its asymptotic
n3 value allow obtaining the global characteristic frequency f.. Using Eq. (36), a function
na linear in frequency zp(w) = ®%*d?(Re(Zy)/di  0p0/3)/ Py = w/w. can be defined. In this
715 case, its slope is the inverse of the global characteristic frequency. Linear fitting of z5(w)
716 leads to f. = 88.5362  5.4570 Hz. An example of this is shown in the left-hand-side inset
n7 plot of Figure 10 for a 4-cm thick GAC sample.

7 The remaining parameters to be determined are r,, and D.. The micropore radius r,, is
719 calculated via a best-fitting routine in which the square of the absolute difference between
720 the predicted and measured surface impedance is minimized. As part of this routine, the
721 measured global characteristic frequency and the other parameters are used to calculate
722 the effective diffusion coefficient D, by inverting Eq. (32), as shown by Eq. (45). The
723 values of the micropore radius and effective diffusion coefficient are r,, = 0.3695 pm and
2 Do = 29156 10 ? m?/s. The values of 1, and r, are consistent with the hypothesis of
s large separation of scales, i.e. €  r,/r, = 5.0183 10 %, and the estimation Eq. (A.12)
2 holds, i.e. nD./r: Py = 38715 10 % = O(¢?). The measured and predicted surface
77 impedance, calculated using Eqs. (29) and (28) and the model shown in tables I and II, of
728 a rigidly-backed 4-cm thick GAC layer is shown in the main plot of Figure 10. Note that
729 the magnitude of the imaginary part of the surface impedance of GAC is much smaller than

720 that of a triple porosity non-sorptive material.

O, i v 1ém | o 1
po= MG g T W Humta 1 (45)
‘ (1 ¢m) ( ¢p)(1 ¢m)H6 Wh '

72 The values of r,,, D., and H. compare well with those commonly found in activated
732 carbons. For example, the size of the larger inner-grain pores, i.e. 2r,,, is typically!? in the
733 order of 0.8 pm. Using Eq. (A.37) and considering that the nanopore size is comparable to
72 that of the fluid molecules, the linearized sorption equilibrium constant expressed in units
735 of adsorbed moles per mass of adsorbent is H = 187.9 pmol/g at normal conditions (i.e.
76 Py = 101325 Pa and 79 = 293.15 K). This is comparable to the data found in literature

737 for materials saturated with nitrogen at normal pressure condition. For example, from the
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FIG. 10. Comparison between measured?2* (

circles) and predicted real (gray lines) and imaginary
(black lines) parts of the normalized surface impedance of a rigidly-backed 4-cm thick layer of
granular activated carbon. Continuous lines — Triple porosity sorptive material. Dashed lines —
Triple porosity non-sorptive material. The left-hand side inset plot shows z3(1) as a function
of frequency. Circles — Measurements. Continuous line — Fitted linear function with slope 1=F..
The right-hand side inset plot shows z;(1) as a function of frequency. Circles — Measurements.
Continuous line — Fitted linear function with slope ®. Dashed line — Fitted linear function with

® = 0, i.e. triple porosity non-sorptive material. In both inset plots, the dotted lines correspond

to T,

73s measured data in Ref. 43 for a granular activated carbon sample having a surface area
730 of 1220 m?/g (i.e. comparable to the GAC sample used in this paper), it is deduced that
770 H = 185.7 pmol/g at 293.15 K. A value of H = 319.9 pumol/g is calculated from the
71 measured data in Ref. 44 for a carbon molecular sieve 5A (i.e. a type of activated carbon)
2 at 303.15 K. For a PCB-type activated carbon, the data in Ref. 45 leads to H = 288.3
73 pmol/g (at 293.15 K), while for a carbon molecular sieve in pellet form a value of H = 175.8
e pmol/g (at 300.15 K) is calculated from the data in Ref. 46.

ns  The values of D, and H, lead to an apparent mass diffusivity of D,,, = 4.1 10 '° m?/s.
746 For the case of nanopore pore size comparable to that of the fluid molecules, D,,, can be
77 interpreted as an activated diffusivity. Chromatographic measurements of this parameter
28 have been reported in Ref. 47 for carbon molecular sieve 5A saturated with nitrogen.
no Its value at 293.15 K is D,,, = 1.85 10 '' m?/s. For the same type of material and
750 saturating fluid, measurements reported in Ref. 44 using a gravimetric technique provides

w1 Dgpp = 1.19 10 1% m?/s at 303 K. In Ref. 48 measurements on an activated carbon
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2 monolith saturated with nitrogen provided a value of Dy, = 1.35 10 ' m?/s at 293.15
3 K. Furthermore, values of D,y = 1.93 10 ° m?/s and Dy, = 7.4 10 '© m?/s at 296 K
754 have been reported in Ref. 49 for two different activated carbon monoliths saturated with

755 nitrogen.

7w 2. Measurements and predictions of sound absorption coe cient

7z Figure 11 compares measured???* and predicted normal incidence sound absorption coef-
7s¢ ficient of a rigidly-backed 3-cm thick layer of granular activated carbon. The model, given by
750 Figs. (29), (28), and those in tables I and II, accurately predicts the measured data. Its pre-
70 dictions for non-sorptive materials are also plotted to highlight the absorptive properties of
71 granular activated carbon. It is clearly observed that a sorptive material shows remarkably
72 higher sound absorption coefficient values at low frequencies in comparison with non-sorptive
763 ones, regardless of whether these feature multiple scales of heterogeneities. The absorption
764 of sound is primarily caused by the combined influence of viscosity and heat transfer effects
765 at the pore scale and the inter-scale mass and pressure diffusion processes, being the former

76 one influenced by sorption while the latter by both sorption and rarefaction.
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FIG. 11. Normal incidence sound absorption coefficient of a rigidly-backed 3-cm thick layer of

22,24 (circles) versus predictions for triple porosity sorp-

granular activated carbon. Measurements
tive material (black line) and triple (dark gray line), double (light gray line), and single (dashed

gray line) porosity non-soprtive materials.
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77 VI. CONCLUSIONS

s This paper investigated sound propagation in multiscale rigid-frame porous materials

760 accounting for the effects of viscosity and heat transfer at the pore scale, viscosity and

=)

70 heat transfer including rarefaction effects at the micropore scale, inter-scale (pore to/from
71 micro-nanopore scales) pressure diffusion, inter-scale (micropore to/from nanopore scales)
722 mass diffusion, and sorption in the nanopores. The two-scale asymptotic method of homog-
773 enization for periodic media has been successively used to derive the macroscopic equations
72 describing sound propagation through the material. These show that, at the leading order,
75 the physical processes in the micro-nano porous domain do not modify the macroscopic fluid
76 flow, provided that the advective mass flux pulsed from the micropores on the pore bound-
777 aries is of one order smaller than the advective mass flux generated by the incident wave in
78 the pores. As a consequence, the dynamic Darcy’s law and the dynamic viscous permeability
779 correspond to those of single porosity non-sorptive materials. Contrarily, the dynamic com-
780 pressibility of the effective saturating fluid is significantly altered by the physical processes

71 occurring at the micro- and nano scales.

72 We have demonstrated that sorption effects occurring in pores of nanometer size still
783 significantly modify the macroscopic mass balance. This modification is accounted for by the
7« dynamic compressibility of the effective saturating fluid which presents atypical properties
7ss that lead to a slower speed of sound and higher sound attenuation in the material. The
786 strength of these macroscopic effects in the audible frequency range largely depends on
77 the geometry and pressure and mass diffusion properties of the material. For example,
788 relatively fast diffusing gas-solid systems whose pressure diffusion behavior is determined
70 by a characteristic frequency that is in the order of that characterizing mass diffusion may
790 be preferred over either slow mass diffusing systems or materials featuring slow pressure

701 diffusion.

72 Contrarily to sorption effects, we have shown that rarefied gas flow in pores with size
793 comparable to the molecular mean free path only intervene in the macroscopic acoustic

74 behavior indirectly via a modification of the apparent pressure diffusivity.

75 The derived low-frequency asymptotics of the surface impedance, which is a quantity
796 commonly measured in the field of acoustics of porous media, were used in conjunction with

707 a characterization procedure to deduce the effective linearized sorption equilibrium constant
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798 and effective diffusion coefficient of granular activated carbon. This provides empirical evi-
790 dence supporting an alternative acoustic method for measuring sorption and mass diffusion
soo properties of multiscale sorptive materials.

g1 The developed theory was then validated experimentally by comparing its predictions
so2 With sound absorption measurements on a granular activated carbon sample showing good
803 agreement.

sos  In addition to the direct applications of the results presented in this paper to acoustics,
s0s one can consider applications to chemical engineering metrology and geophysics. Extensions
sos Of this work may include the study of sound propagation in multiscale sorptive porous
sor materials saturated with fluid mixtures as well as the inclusion of the elasticity of the solid

sos frame into the modeling.
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sis Appendix A

sz This appendix provides the derivation of the upscaled model for sound propagation in
s1s the micro-nano porous domain. First we recall the model for double porosity sorptive ma-
s10 terials developed in Ref. 25. This is then extended to account for rarefaction effects at the

g20 micropore scale.

s21 1.  Governing equations

s2  The governing equations for diffusion and sorption of a pure fluid in the nano porous
&3 domain are formulated first. In doing so, it is assumed that!?®: i) sorption occurs on the

s walls of the nanopores, ii) the adsorbed molecules (adsorbate) and the gas phase molecules
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g5 saturating the nanopores are in ”dynamic instantaneous” equilibrium, and iii) the fluid

N

s26 molecules are diffused through the nano porous domain via two diffusion mechanisms, i.e.

[¥]

s27 diffusion in the bulk of the nanopores and surface diffusion on the nanopore walls.

¥

8!

N

¢ Since the characteristic sizes associated with the micro and nano scales are well separated,
s 1.e. 1, /l,, << 1, the nano porous domain is modeled as an equivalent continuum governed

s20 by effective equations defined in €2,, and reflect the local physical processes. For simplicity,

@

ga1 it is assumed that the nano porous domain is isotropic. The constitutive flux equation

%)

8 1,25:

@

» accounting for the two mentioned diffusion mechanisms is given by
J= ¢n(pDpre, + (1 p)Dsrey), (A.1)

s13 where J is the molar mass flux, ¢, and ¢, are, respectively, the concentration of the gas (in
s mole/volume of fluid) and adsorbed (in mole/volume of adsorbed phase) phases, D, is the

s3s nanopore diffusion coefficient, and Dy is the surface diffusion coefficient. The transport void

@

s36 fraction ¢ = €2, /€, represents the fraction of the nano porous void space available for the
s transport of free molecules. Similarly, (1  ¢) = Q,/Q,,s represents the fraction of space
s3s available for the transport of adsorbed molecules (see Figure 1).

s Performing a mass balance in a volume element of the nano porous domain leads to the

sa0 following equation’? :

Jwon(pen + (1 @)es) = oo (pDpre, + (1 ©)Dsreg) in Q. (A.2)

sa1 As mentioned above, the adsorbed phase is assumed to be in ”dynamic instantaneous”
sz equilibrium with the gas phase. This is valid when the local adsorption kinetics is much
sa3 faster than the diffusion processes. Such a situation is commonly found in nano porous media
s and is justified by the fact that the average residence time of adsorption ranges from 10 3
a5 to 10 ¥ s for physical adsorption!. The equilibrium relationship between the two phases is

saas then given by:
cs=He, in Q,, (A.3)

sa7 Where H is the linearized sorption equilibrium constant and is associated with the slope of
sas the local isotherm at a given equilibrium point, as shown for a Langmuir isotherm model
ss0 further below.

g0  Replacing Eq. (A.3) into Eq. (A.2) and writing the concentration in terms of density,

38



es1i.e. pp = ¢, M, where M is the molar mass of the gas, lead to the Fickian equation!>25:

jwpnH, = D.¥ ¥p, in Q,, (A.4)

ss2 where the effective diffusion coefficient D, and the effective linearized sorption equilibrium
ss3 constant H, are given by:

D, = (bn((zpDn + (1 QO)DSH% (A5)

854

He=¢n(p+ (1 ¢)H). (A.6)
sss The equations of fluid motion in the micropores comprise the linearized equations of
ss6 conservation of momentum, mass, and energy, and equation of state. These are respectively
ss7 given by Eqgs. (1), (2), (3), and (4) with the subscript p being replaced by m and are coupled
sss with Eq. (A.4) via the following boundary conditions expressing the continuity of normal
sso mass flux and pressure, and of negligible temperature variations and tangential mass flux

sso on the micropore boundary I',,.

pou,, n,= D.rp, n, on I, (A.7)

861
po(u, (u, n,)n,)=0 on T, (A.8)

862
Pn = Pm 1.6 pn:@pm on I, (A.9)

P

863

Tm =0 on T,,. (A.10)

sss Here the density and pressure in the effective nano porous domain are represented by p,
g5 and p,. The oscillatory fluid velocity, pressure, and temperature in the micropores are
sss respectively denoted as w,,, pn, and 7,. The outward-pointing normal vector is n,, (see

867 Figure 1)

ss 2. Homogenization procedure

g0 T'he homogenization procedure described in Section II C is then applied. Now we consider
g0 the small parameter € = [,,,/l, << 1 and that the fast spatial variable y is associated with
en fluctuations at the micropore (local) scale while the slow spatial variable x with variations
e at the pore (larger) scale. The rescaled set of governing equations is formulated by assessing
73 whether the variables fluctuate at the local or larger scale, as well as by considering the

g7a Telative order of magnitude of the different terms in the governing equations. The oscillatory
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g7s fluid velocity u,,, temperature 7,,, and density p,, vary at the local scale, while the pressure
s P at the larger scale?®. The relative order of magnitude of the different terms in the
sr7 equations of conservation of momentum, mass, and energy, and of state associated with
s7s the micropore fluid network are the same as those discussed in Section IIC. On the other
g0 hand, the most general regime of mass diffusion/sorption occurs when both terms in Eq.
s (A.4) are of the same order of magnitude, i.e. O(D.p,/I2,) = O(wp,H,). In addition, the
g1 long-wavelength condition imposes that, on the micropore boundary I',,, the diffusive mass
se2 flux is of one order smaller than the advective mass flux in the micropores?, i.e.

g = 1PXed _ i, (A1)
JpollmJ

sss This can be written in terms of physical parameters as?:

Pn De 7’]De lp . 77De 2
J=0 — =0 —/—-— =0 €. =0 A12
um lmp(] PO lf)n (8>7 Le l%,LPO (8 )7 ( )

ssa and indicates that the effective description of sound propagation in the micro-nano porous
sss domain to be derived is valid when the combination of physical parameters Fy, n, D,., and
ss6 [, satisfies the estimation Eq. (A.12).

ssr  The rescaled set of equations is then given by Eqs. (12), (13), and (14) with the subscript
sss p being replaced by m, Eq. (A.13), and boundary conditions (A.14)-(A.17).

e2D.r ¥p, = jwp,H, in Q,. (A.13)

889
ool N, = £2D.¥p, n, on I,, (A.14)

890
po(u, (u, n,)n,)=0 on T, (A.15)

891
pn:&pm on I, (A.16)

Py

892

Tm =0 on I, (A.17)

ss Note that the e%-rescaling in the boundary condition (A.14) results from (i) the physical
sos estimate (A.11) stating that the diffusive flux is of one order smaller than the advective one,
sos and (ii) the fact that p, varies at the local scale.

s The physical variables are then looked for in the form of asymptotic expansions in powers
so7 of the small parameter ¢ = [,,,/1, as Q(x,y) = Z.J;O QW (x,y) where Q = P, U, Tin, P
s These are then substituted into the rescaled set of equations and the terms of the same

so0 order are identified. At ¢ ! it follows from the equation of conservation of momentum that
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) (0)

900 r'yp,(n,? = 0, which means that the pressure varies at the larger scale, i.e. p72 = p£2) (x).
o1 Further identification provides the following leading-order cell problems.

o2 Fluid ﬂOW:

neoul rypl) = jwponl) + ropl) in Qg (A.18)
903
r, =0 in Q. (A.19)
904
u? =0 on I,. (A.20)
os Heat conduction:
Ky ryT#?):jwcpPOTrgg) jwpﬁ,?) in me, (A.Ql)
906
7W=0 on T,,. (A.22)
or Mass diffusion:
Doy 1yp) = jwpPH, in (A.23)
908
O =250 on T, (A.24)
Fy

w0 The solutions of the fluid flow (i.e. Eqgs. (A.18)-(A.20)) and heat conduction (i.e. Egs.
o (A.21)-(A.22)) problems are given by?%:30:32;

9

s

K (y,w)

u) = = ) (A.25)
7
911
P = Tmly,w) Capl) +p0)(x), (A.26)
912 _
em ) .
TV = —<Z w)prfﬁ), (A.27)

o13 where k,,(y,w) and 6,,(y,w) represent the €, periodic local fields of velocity and tem-
s perature respectively. The pressure field has been expressed in terms of its zero mean part
a5 T (y,w) and an integration constant ) (x).

as  The solution of the mass diffusion problem (i.e. Eqgs.(A.23) and (A.24)) is given by®?:

(0) (0) -

£o B PO Dapp 7
a7 where g(y,w) represents the €2,,  periodic local diffusive density field and the apparent
as diffusivity D,y is defined as:

De . (,DDn + (1 (,D)DSH

D,,, = =%
" H, e+ (1 pH

(A.29)
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a0 3. Effective model for sound propagation in the micro-nano porous domain

o0  The leading-order mass balance equation, i.e. Eq. (13) with the subscript p being replaced

921 by m, integrated over the micropore space €,,; and divided by the volume €2, is given by:
jw 2 2 4hr, i, +hr, uli, =0, (A.30)

o2 Where the averaging operator is defined as:

z
1

hiy = —— dS. A.31
O o (A.31)

2 The term hr uli,, in Eq. (A.30) is calculated by making successive use of the di-

o2s Vergence theorem, noting that the surface integrals on opposite boundaries of the cell can-
os cel out due to periodicity, and using the boundary condition (A.14) identified at &' (i.e.

926 pgug,ll) n, = D, r'y,oglo) n,, on [';,) and Egs. (A.23) and (A.28). Its expression is:

Z —
oHe 1 | Jwilyw)
" PO Qm Qn Dapp

o7 The effective model for sound propagation in the micro-nano porous domain is then
226 obtained by i) replacing Eq. (A.32) into Eq. (A.30), ii) substituting 7" (i.e. Eq. (A.27))
w0 and pi (ie. Eq. A.28) in Eq. (A.30), iii) using the thermodynamic identity Py/7 =

hr, ulli,, = jwp dsQ. (A.32)

o0 poCp(y  1)/v (where v is the specific heat ratio), and iv) considering that the averaged
on velocity is determined from Eq. (A.25). The mass balance equation and constitutive fluid

o2 flow law are given by:

r U, + jwpmCunn =0, (A.33)
933
k,,
U, = n(“’) Do (A.34)

oa Here the Darcy’s velocity is given by U, = huﬁg)im and since the derivatives are taken
o35 with respect to the larger-scale spatial variable and the pressure and Darcy’s velocity are
o3 leading order terms, we have dropped the superscript () and the index z here and in the
o7 main text. The dynamic viscous permeability associated with the micropore fluid network
o is calculated as k,,(w) = hk,,(y,w)i,,. The effective dynamic compressibility C,,,(w) is
a0 given by Eq. (25), ie. Cpp = Cp + (1 ¢)CFonn, and corresponds to the sum of the
ao classical effective dynamic compressibility accounting for heat transfer in the micropores

a1 Cp(w), and an additional effective dynamic compressibility C,, that accounts for sorption in

42



w2 the nanopores and is modified by the inter-scale mass diffusion. The latter is also affected
o3 by sorption and is accounted for by F,,,(w). The compressibility C,, is calculated using
ae Eq. (23) with the subscript p being replaced by m and the associated dynamic thermal
as permeability is calculated as ©,,(w) = hf,,(y,w)i,,. The compressibility C, is given by Eq.
o5 (26) and F,,, is related to the inter-scale (micro-nano) mass diffusion function G(w) via Eq.
o7 (27). The latter is calculated as®:

yA

Gw) = g(y,w)ds. (A.35)

1
Qo g,
ws  In summary, the effective model for sound propagation in the micro-nano porous domain,
a0 given by Eqgs. (A.33) and (A.34), allows concluding that the constitutive fluid flow law of
ss0 the micropore fluid network and the dynamic viscous permeability are not modified by the
os1 inter-scale mass diffusion and sorption in the nanopores. Conversely, the effective dynamic
2 compressibility becomes significantly modified by inter-scale mass diffusion and sorption.
o3 This modification comes from the appearance of a source term in the mass balance equation

os¢ (i.e. the third term in Eq. (A.30)) that accounts for the contribution of both processes.

o5 As shown in Section III, the low-frequency behavior of the effective dynamic compress-
os6 1bility is determined by H., which depends on H. A linearized dynamic sorption model
os7 derived in Ref. 25 allows linking A with the parameters of the classical Langmuir kinetics
oss model®!. Tts use leads to replace Eq. (A.3) by ¢ = H(w)c,, where the linearized sorption
ss0 “dynamic equilibrium” constant is given by:

pn  bF 1

Hiw) = po (L+DPR)? (1+22) (4.36)

wo Here w, = k, Py + kg is the sorption characteristic frequency, k, is the adsorption constant
o1 (in 1/Pa/s), kg4 is the desorption constant (in 1/s), and b = k,/k, is the Langmuir constant
s (in 1/Pa), and py is the maximum density increment due to sorption. Since the average
o3 residence time of adsorption, i.e. 7, = 1/w,, ranges from 10 3 to 10 ? s for physical
os adsorption!, the sorption characteristic frequency takes very high values and H(w) can be
o6s approximated by?5:

pn  bF
H=Hw<<w,) =">—"—. A.37
(W . ) Lo (1+bP0)2 ( )
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ws 4. Rarefaction effects on sound propagation in the micro-nano porous domain

o7  For micropores with sizes comparable to the molecular mean free path ¢ = P% W
s With R, being the gas constant, effects related to the molecular nature of the gas start
ses becoming considerable37:40:50-53  The ratio between ¢ and the micropore characteristic size,
o0 known as the Knudsen number Kn = ¢/[,,, measures the degree of rarefaction. Its value is
on used for assessing the validity of the continuum hypothesis®®. For Kn < 0.01, this hypothesis
o2 remains valid and the set of equations discussed in Section A 1 holds. For 0.01 < Kn < 0.01
o3 (commonly referred to as the slip-flow regime), the continuum description is valid everywhere
o4 in the micropore fluid network except in a thin Knudsen layer close to the micropore walls.
ars In order to account for this effect, the continuum description is modified by allowing a degree
o Of tangential-velocity slip®’. Hence the boundary conditions (A.7) and (A.8) are replaced
o7 by Eq. (A.38). Similarly, molecular effects influence the thermal behavior of materials with
o8 [, = O({). For 0.01 < Kn < 0.1, the continuum description is modified to account for the
o9 temperature-jump on the micropore boundaries. This is achieved by replacing Eq.(A.10)
90 by the so-called temperature-jump boundary condition Eq. (A.39), which states that the
o1 temperature is proportional to the normal component of the temperature gradient®”4%:52, In
2 these equations, t,, is the tangential vector collinear with the velocity slip and the velocity
o83 slip and temperature jump coefficients are respectively denoted by ¢, and ¢; and are assumed

o equal to one, i.e. the molecules are reflected diffusively®.

D.
UmI —rpn nm nm Cvg(tm rum nm>tm on Fm7 (A38)
Po

985

2

Tm — Ct

1Pr€r7'm n, on I[,,. (A.39)

o6 Reminding that the velocity u,,, temperature 7,,,, and density p,, vary at the local scale, and

o7 using Eq. (A.11); these boundary conditions rewritten in rescaled form are given by:

D,
u,, = &2~ rp, n, n, &l(t, ru, n,)t, on I, (A.40)
988 po 2
Tm = € 7 Pr/rr, mn, on I,,. (A.41)
v+1

oo The application of the homogenization procedure leads to the fluid flow and heat conduction
o0 leading-order cell problems Eqs. (A.18)-(A.19) and (A.21) with the boundary conditions
o1 (A.20) and (A.22) being respectively replaced by :

W, = (t9 r,u? n,)t® on T,, (A.42)
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2
70 = 7 Prir,79 mn,, on T,. (A.43)
v+1

02 These resulting leading-order cell problems have been solved in Refs. 22, 24, and 53. Their
%3 solutions, which are given by Egs. (A.44) and (A.45), replace Egs. (A.25) and (A.27).

km 9 7K
u® — (y,w, Kn) o0, (A.44)
U

994

Qm ) Y K .
7@ = mltp 0 Kn) : ) (A.45)

s Further algebra leads to the effective model for sound propagation in the micro-nano porous
s domain given by Eqs. (20)-(21). However, its effective parameters are modified by rarefac-
so7 tion effects. Specifically, the dynamic viscous and thermal permeabilities associated with the
95 micropore fluid network are calculated as k,,(w, Kn) = hk,,(y,w, Kn)i,, and ©,,(w,Kn) =
900 N, (17, w, Kn)i,,. Consequently, the effective dynamic compressibilities C,,, and C,,, are also
oo affected by rarefaction effects.

wn It then follows that sound propagation in multiscale sorptive materials is affected by
w02 rarefaction effects via the dependence of the effective dynamic compressibility C on both
100 Cpp, and Fpppn. In particular, the modification by rarefaction effects of the latter comes
w04 from their influence on the pressure field p,(fi) in Eq. (B.6), which is determined by the
wos apparent pressure diffusivity (i.e. Eq. (B.7)) that becomes Knudsen number-dependent, i.e.

1005 Byypp(w, Kn) = K, (w, Kn) /nCpppn(w, Kn).

wr Appendix B

wee  This appendix provides the mathematical details of the derivation of the macroscopic
1000 equations (20) and (21) that describe sound propagation in multiscale sorptive materials.

wo  Replacing the variables written as asymptotic expansions in powers of the small parameter
o1 €, 1.e. Qx,y) = Pij;o QW (x,y) where Q = pp, Wy, T, Pp, Pms Um, into Egs. (12)-(19) and
1012 identifying the terms of the same order lead to the following results. At e !, it follows
3 from the equation of conservation of momentum that rypz(,o) = 0, which implies that the

: . bl | ©) _ (0
1014 pore pressure is a macroscopic variable, i.e. pp’ = pp’ ()

. Further identification leads to
s the oscillatory Stokes and heat conduction problems in the pore fluid network. These are

16 Tespectively given by Eqgs. (A.18)-(A.20) and (A.21)-(A.22) with the subscript m being
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1017 Teplaced by p. Their solutions are given by?%:3%:32;

Y, w
uz(,o) = —p( ) I"xp](oo), (B.1)
n

1018 1 0 1

p) = mly.w) el + o (@), (B.2)
1019 _

Op(y,w)
TZ(,O) = ijwp](Do). (B.3)

1020 where k,(y,w) and 0, (y, w) represent the 2, periodic local fields of velocity and temperature
1wz respectively. The pressure field has been expressed in terms of its zero mean part 7,(y, w)
1022 and an integration constant ;51(31)(3:).

w23 In the micro-nano porous domain, which is assumed isotropic for simplicity, the local
1024 pressure field is imposed by the pore pressure on I', and is governed by the following set of

1025 equations:

Kn . )
r, — rypﬁg) + ]wpgg)cmn =0 in Qun, (B.4)
n
1026
0 — pl(,o) on [, (B.5)

12z 'This problem is formally identical to that of pressure diffusion in double porosity materials

1028 with highly-contrasted permeabilities®*3. Therefore, its solution is given by:

wa Y, w
Py =p) 1 % 7

app

(B.6)

1020 where b(y,w) represents the Q, periodic local diffusive pressure field and the apparent
w30 pressure diffusivity B, is defined by:

K

B —. B.
o (B.7)

app —

wn  The integration of the leading-order mass balance equation over the pore volume leads

1032 t0O: *
Jw —— — 4, hu:f,o)i +hr, u}(jl)i =0, (B.8)
1033 where the averaging operator is defined as:
) VA
hi=— ds2. (B.9)

Q qn

1 The last term on the left-hand side of Eq. (B.8) is calculated by i) using the divergence

1035 theorem, ii) taking into account that the surface integrals on opposite boundaries of the cell
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103 cancel out due to periodicity and using Eq. (17) identified at order ¢, iii) transforming the
1037 resulting surface integral into a volume integral using the divergence theorem, iv) integrating
1038 over the micro-nano porous domain the Eq. (15) identified at the dominant order, and v)

103 replacing Eq. (B.6). The final result is:
jwB(w)

hr, ulVi=jwp®(1 ¢)Cun(w) 1 ——o— | (B.10)
Y b b ! (]‘ gbp)Bapp
10 where the inter-scale pressure diffusion fuznction B(w) is calculated as:
1 _
B(w) = — by, w)dS). (B.11)
Qp Qmn

w1 The macroscopic description of sound propagation in multiscale sorptive materials, i.e.
022 Egs. (20) and (21), is then obtained by substituting Eqgs. (B.10) and (B.3) into Eq. (B.8),
13 using the thermodynamic identity Py/79 = poCp(y 1)/7, and considering that the averaged
s fluid velocity is determined from Eq. (B.1), with the dynamic viscous permeability tensor
105 being calculated as k,(w) = hk,(y,w)i. The dynamic thermal permeability associated to

16 the pore scale is calculated as ©,(w) = hd,(y,w)i (see Eq. (B.3)).

1047 Appendix C

e  This appendix presents the derivation of the asymptotic values of effective dynamic com-
a9 pressibility C(w) given by Egs. (30) and (31).

w0 The behavior of C;(w) (with ¢ = p,m) is characterized by that of ©;(w), which is in
w051 turn determined by wy. The thermal permeability varies®? from 0;(w << wy) = O to
w02 O;(w >> wy) = j¢;07, where 6; = m is the thermal boundary layer thickness.

153 Therefore, the effective dynarréic compressibility C;(w) varies as?:

Py p ou for w<< Wi (C 1)
- % .
77% for w >> wy.

s+ The behavior of F,,,(w) is determined by that of G(w). The latter is characterized by
10ss the mass diffusion characteristic frequency wy and varies® from G(w << wy) = Gy to
wse G(w >> wyg) = J(1  ¢y,)0%, where §g = pm is the mass diffusion boundary layer
w0s7 thickness. It then follows that F,(w << wy) = 1  jw/wg and Fp,(w >> wy) = 0.

wss 'Therefore, 8the effective dynamic compressibility C,,, takes the following asymptotic values:

< Om+ (1 Om)H. Jw 1 1ém 4o (L ém) for w<<wy

v wd (C.2)
for w >> wyy,.

Cmn =

1

Po
> 9m

vFo
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o From Eq. (C.2), it is deduced that the static compressibility of the effective fluid satu-

we0 Tating the micro-nano porous domain is given by :

_Ont (1 owH.

CmnO = Cmn<w = 0) PO

(C.3)

wsr The behavior of the function F,,,(w) is determined by B(w) and Bg,,(w). Focusing on
1062 isothermal sound propagation in the micropores (i.e. w << wy,) and quasi-static inter-scale
063 mass diffusion (i.e. w << wy), the apparent pressure diffusivity is estimated by Bgyp,

1064 Bappo = Kino/NCrmno. Then, the pressure diffusion function varies from B(w << wy) = By
wes t0 B(w >> wp) = j(1  ¢,)0%, where §yy = pBapp—o/w is an estimation of the pressure
wes diffusion boundary layer thickness. It then follows that Fp,,(w << wy) =1 jw/w, and
1067 Fpmn(w >> wp) = 0. Combining this result with Eqgs. (22), (C.1), and (C.2), and only

1068 Tetaining linear terms in frequency, one obtains Eqs. (30) and (31).
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